Les enrobés bitumineux

Mise à jour

Janvier 2002
LES ENROBÉS BITUMINEUX
Mise à jour 2001

Codes des modifications :
A = Ajouter C = Changer R = Remplacer ou Refaire S = Supprimer

NOTE : Les modifications figurant dans le tableau qui suit apparaissent en gras dans les pages mises à jour

<table>
<thead>
<tr>
<th>ENDROIT</th>
<th>CODE</th>
<th>MODIFICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page</td>
<td>Para.</td>
<td>Ligne</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>C</td>
</tr>
<tr>
<td>Tabl.</td>
<td>1.4</td>
<td>R</td>
</tr>
<tr>
<td>17</td>
<td>1.9.2</td>
<td>7.8.9</td>
</tr>
<tr>
<td>17</td>
<td>1.9.2</td>
<td>12-16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>Entre 2-3</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>A</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>R</td>
</tr>
<tr>
<td>19</td>
<td>EXE</td>
<td>1.12</td>
</tr>
</tbody>
</table>
CHAPITRE 2

<table>
<thead>
<tr>
<th>ENDROIT</th>
<th>CODE</th>
<th>MODIFICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page</td>
<td>Para.</td>
<td>Ligne</td>
</tr>
<tr>
<td>25</td>
<td>2.3.4</td>
<td>fin</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>3,4,5</td>
</tr>
<tr>
<td>26</td>
<td>Fig.</td>
<td>2.2</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>2.3.6</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>2.3.7</td>
<td>5</td>
</tr>
<tr>
<td>27</td>
<td>2.3.7</td>
<td>7-8</td>
</tr>
<tr>
<td>27</td>
<td>Tab.</td>
<td>2.1</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>Fig.</td>
<td>2.5</td>
</tr>
<tr>
<td>37</td>
<td>2.4.1</td>
<td>5</td>
</tr>
<tr>
<td>37</td>
<td>2.4.1</td>
<td>7</td>
</tr>
<tr>
<td>37</td>
<td>2.4.1</td>
<td>9</td>
</tr>
<tr>
<td>38</td>
<td>REM.</td>
<td>4</td>
</tr>
<tr>
<td>39</td>
<td>Tab.</td>
<td>2.2</td>
</tr>
<tr>
<td>42</td>
<td>Tab.</td>
<td>2.4</td>
</tr>
<tr>
<td>47</td>
<td>Tab.</td>
<td>2.5</td>
</tr>
<tr>
<td>48</td>
<td>Tab.</td>
<td>2.6</td>
</tr>
<tr>
<td>49</td>
<td>EXE</td>
<td>2.12</td>
</tr>
<tr>
<td>49</td>
<td>EXE</td>
<td>2.13</td>
</tr>
<tr>
<td>49</td>
<td>EXE</td>
<td>2.14</td>
</tr>
</tbody>
</table>

CHAPITRE 3

<table>
<thead>
<tr>
<th>ENDROIT</th>
<th>CODE</th>
<th>MODIFICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page</td>
<td>Para.</td>
<td>Ligne</td>
</tr>
<tr>
<td>53</td>
<td>3.3.2</td>
<td>3</td>
</tr>
<tr>
<td>53</td>
<td>3.3.2</td>
<td>4</td>
</tr>
<tr>
<td>54</td>
<td>Tab.</td>
<td>3.1</td>
</tr>
<tr>
<td>55</td>
<td>3.3.4</td>
<td>1</td>
</tr>
<tr>
<td>55</td>
<td>Tab.</td>
<td>3.2</td>
</tr>
<tr>
<td>63</td>
<td>3.6</td>
<td>1</td>
</tr>
<tr>
<td>63</td>
<td>Tab.</td>
<td>3.4</td>
</tr>
</tbody>
</table>
CHAPITRE 4

<table>
<thead>
<tr>
<th>ENDROIT</th>
<th>CODE</th>
<th>MODIFICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page</td>
<td>Para.</td>
<td>Ligne</td>
</tr>
<tr>
<td>83</td>
<td>4.1.1</td>
<td>Tout</td>
</tr>
<tr>
<td>84</td>
<td>1</td>
<td>1-4</td>
</tr>
<tr>
<td>84</td>
<td>Fig.</td>
<td>4.1</td>
</tr>
<tr>
<td>85</td>
<td>Fig.</td>
<td>4.2</td>
</tr>
<tr>
<td>86</td>
<td>4.1.2</td>
<td>Fin</td>
</tr>
<tr>
<td>87</td>
<td>3</td>
<td>1-2</td>
</tr>
<tr>
<td>90</td>
<td>Fig.</td>
<td>4.6</td>
</tr>
<tr>
<td>94</td>
<td>Ex.</td>
<td>4.4</td>
</tr>
<tr>
<td>95</td>
<td>Ex.</td>
<td>4.4</td>
</tr>
<tr>
<td>98</td>
<td>Ex.</td>
<td>4.6</td>
</tr>
</tbody>
</table>

CHAPITRE 5

<table>
<thead>
<tr>
<th>ENDROIT</th>
<th>CODE</th>
<th>MODIFICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page</td>
<td>Para.</td>
<td>Ligne</td>
</tr>
<tr>
<td>115</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>116</td>
<td>E 5.1</td>
<td>2</td>
</tr>
<tr>
<td>117</td>
<td>E 5.2</td>
<td>Sol.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>Tab.</td>
<td>5.3</td>
</tr>
<tr>
<td>125</td>
<td>E5.5</td>
<td>2</td>
</tr>
<tr>
<td>127</td>
<td>Tab.</td>
<td>5.4</td>
</tr>
<tr>
<td>130</td>
<td>d) 2</td>
<td>2-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>21</td>
<td>31</td>
</tr>
<tr>
<td>132</td>
<td>Tab.</td>
<td>5.4</td>
</tr>
<tr>
<td>133</td>
<td>Tab.</td>
<td>5.5</td>
</tr>
<tr>
<td>136</td>
<td>Tab.</td>
<td>5.6</td>
</tr>
<tr>
<td>141</td>
<td>Exer</td>
<td>5.6</td>
</tr>
<tr>
<td>142</td>
<td>Tab.</td>
<td>5.7</td>
</tr>
</tbody>
</table>

CHAPITRE 6

<table>
<thead>
<tr>
<th>ENDROIT</th>
<th>CODE</th>
<th>MODIFICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page</td>
<td>Para.</td>
<td>Ligne</td>
</tr>
<tr>
<td>149</td>
<td>Tab.</td>
<td>6.1</td>
</tr>
<tr>
<td>150</td>
<td>Tab.</td>
<td>6.1</td>
</tr>
<tr>
<td>164</td>
<td>Ex6.2</td>
<td>Solu.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>Ex6.1</td>
<td>3</td>
</tr>
<tr>
<td>164</td>
<td>Ex6.2</td>
<td>3</td>
</tr>
<tr>
<td>166</td>
<td>Ex6.3</td>
<td>Solu.</td>
</tr>
<tr>
<td>168</td>
<td>Ex6.4</td>
<td>Solu.</td>
</tr>
</tbody>
</table>
CHAPITRE 7

<table>
<thead>
<tr>
<th>ENDROIT</th>
<th>CODE</th>
<th>MODIFICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page</td>
<td>Para.</td>
<td>Ligne</td>
</tr>
<tr>
<td>189</td>
<td>7.1</td>
<td>R</td>
</tr>
<tr>
<td>190</td>
<td>7.2</td>
<td>R</td>
</tr>
<tr>
<td>190</td>
<td>c)</td>
<td>6</td>
</tr>
<tr>
<td>191</td>
<td>EXE</td>
<td>7.14</td>
</tr>
</tbody>
</table>

CHAPITRE 9

<table>
<thead>
<tr>
<th>ENDROIT</th>
<th>CODE</th>
<th>MODIFICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page</td>
<td>Para.</td>
<td>Ligne</td>
</tr>
<tr>
<td>237</td>
<td>Exe.</td>
<td>9.11</td>
</tr>
</tbody>
</table>

CHAPITRE 10

<table>
<thead>
<tr>
<th>ENDROIT</th>
<th>CODE</th>
<th>MODIFICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page</td>
<td>Para.</td>
<td>Ligne</td>
</tr>
<tr>
<td>239</td>
<td>10.1</td>
<td>1</td>
</tr>
<tr>
<td>241</td>
<td>Fin</td>
<td>3</td>
</tr>
<tr>
<td>242</td>
<td>1</td>
<td>1-3</td>
</tr>
<tr>
<td>244</td>
<td>10.6</td>
<td>11</td>
</tr>
<tr>
<td>247</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>249</td>
<td>a)</td>
<td>1</td>
</tr>
</tbody>
</table>

CHAPITRE 11

<table>
<thead>
<tr>
<th>ENDROIT</th>
<th>CODE</th>
<th>MODIFICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page</td>
<td>Para.</td>
<td>Ligne</td>
</tr>
<tr>
<td>255</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>260</td>
<td>Fin</td>
<td>2</td>
</tr>
<tr>
<td>261</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>261</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>261</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>269</td>
<td>Tab.</td>
<td>11.2</td>
</tr>
<tr>
<td>276</td>
<td>Fig</td>
<td>11.18</td>
</tr>
<tr>
<td>277</td>
<td>Tab</td>
<td>11.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>278</td>
<td>Tab.</td>
<td>11.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CHAPITRE 12

<table>
<thead>
<tr>
<th>ENDROIT</th>
<th>CODE</th>
<th>MODIFICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page</td>
<td>Para.</td>
<td>Ligne</td>
</tr>
<tr>
<td>282</td>
<td>Tab.</td>
<td>12.1</td>
</tr>
</tbody>
</table>

CHAPITRE 13

<table>
<thead>
<tr>
<th>ENDROIT</th>
<th>CODE</th>
<th>MODIFICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page</td>
<td>Para.</td>
<td>Ligne</td>
</tr>
<tr>
<td>317</td>
<td>13.3.</td>
<td>a)</td>
</tr>
</tbody>
</table>

CHAPITRE 15

<table>
<thead>
<tr>
<th>ENDROIT</th>
<th>CODE</th>
<th>MODIFICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page</td>
<td>Para.</td>
<td>Ligne</td>
</tr>
<tr>
<td>341</td>
<td>Tab.</td>
<td>15.1</td>
</tr>
<tr>
<td>342</td>
<td>Tab.</td>
<td>15.2</td>
</tr>
<tr>
<td>342</td>
<td>Fin</td>
<td>1</td>
</tr>
<tr>
<td>343</td>
<td>Tab.</td>
<td>15.3</td>
</tr>
<tr>
<td>375</td>
<td>E</td>
<td>1.12</td>
</tr>
<tr>
<td>377</td>
<td>E</td>
<td>2.10</td>
</tr>
<tr>
<td>377</td>
<td>E</td>
<td>2..11</td>
</tr>
<tr>
<td>377</td>
<td>E</td>
<td>2..12</td>
</tr>
<tr>
<td>377</td>
<td>E</td>
<td>2.14</td>
</tr>
<tr>
<td>398</td>
<td>13.16</td>
<td>C</td>
</tr>
<tr>
<td>410</td>
<td>Bibli</td>
<td>6</td>
</tr>
</tbody>
</table>

TABLE DES MATIÈRES

<table>
<thead>
<tr>
<th>ARTICLE</th>
<th>CODE</th>
<th>TEXTE</th>
<th>MODIFICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.7.1</td>
<td>R</td>
<td>Détermination de la pénétration NQ 2300-270</td>
<td>Détermination de la température H- DSR AASHTO TP-5</td>
</tr>
<tr>
<td>2.3.7.2</td>
<td>R</td>
<td>Détermination de la ductilité NQ 2300-055</td>
<td>Détermination de la température L- BBR AASHTO TP-1</td>
</tr>
<tr>
<td>2.3.7.3</td>
<td>R</td>
<td>Détermination de la viscosité cinématique NQ 2300-600</td>
<td>Détermination de la viscosité Brookfield AASHTO TP48-97</td>
</tr>
<tr>
<td>4.1.1</td>
<td>C</td>
<td>… des ponts et chaussées (LPC) …</td>
<td>… des chaussées (MTO)</td>
</tr>
<tr>
<td>4.1.1.1</td>
<td>R</td>
<td>Essai Duriez ou essai d compression simple</td>
<td>Tenue à l’eau (par trempage) (LC-26-001)</td>
</tr>
</tbody>
</table>

DIVERS

<table>
<thead>
<tr>
<th>ENDROIT</th>
<th>CODE</th>
<th>MODIFICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page</td>
<td>Para.</td>
<td>Ligne</td>
</tr>
<tr>
<td>410</td>
<td>Bibli</td>
<td>9</td>
</tr>
</tbody>
</table>

Andy Lelièvre
2.3.5 Caractéristiques ... 26
2.3.6 Propriétés .. 27
2.3.7 Spécifications et essais sur les bitumes routiers 27
2.3.7.1 Détermination de la température H 28
2.3.7.2 Détermination de la température L 29
2.3.7.3 Détermination de la Viscosité Brookfield 30
2.3.7.4 Détermination de la viscosité absolue (ASTM D-2171) .. 30
2.3.7.5 Étuvage en couche mince (NQ 2300-075) 31
2.3.7.6 Détermination de la densité (ASTM D-70) 32
2.3.7.7 Détermination du point d’éclair 33
 en vase ouvert (NQ 2300-040)... 33
2.3.7.8 Solubilité (NQ 2300-053) .. 34
2.3.7.9 Détermination du point de ramollissement (ASTM D-36) 34
2.3.7.10 Détermination de la force de ductilité (LC-25 04) 36
2.3.7.11 Détermination de la récupération élastique (LC-25 05) 36
2.3.7.12 Détermination du point de fragilité Fraas (IP-80) 37

2.4 Les bitumes fluidifiés ... 37
2.4.1 Classes de bitumes fluidifiés .. 37
2.4.2 Sous-classes ou classement selon la viscosité 37
2.4.3 Usages et spécifications ... 38
2.4.4 Essais normalisés sur les bitumes fluidifiés 39
 2.4.4.1 Distillation (ASTM D-402) 39
 2.4.4.2 Détermination du point d’éclair 39
 en vase ouvert (NQ 2300-040)....................................... 40
 2.4.4.3 Détermination de la densité à l’hydromètre (ASTM D-3142) 40
 2.4.4.4 Essais sur le résidu de la distillation 41

2.5 Émulsions de bitume ... 41
2.5.1 Classes d’émulsions .. 41
2.5.2 Sous-classes ou classement selon la viscosité 41
2.5.3 Autres types d’émulsions .. 41
2.5.4 Usages et spécifications .. 42
2.5.5 Essais normalisés sur les émulsions de bitume (ASTM D-244) 42
 2.5.5.1 Distillation ... 42
 2.5.5.2 Détermination de la viscosité Saybolt Furol 43
 2.5.5.3 Sédimentation .. 44
 2.5.5.4 Autres essais sur les émulsions de bitume 45
 2.5.5.5 Essais sur le résidu d’une émulsion de bitume 45

2.6 Bitumes modifiés ... 45

2.7 Bitumes polymères ... 46
 2.7.1 Fabrication ... 46
 2.7.2 Caractéristiques particulières 46
 2.7.3 Usage ... 46
 2.7.4 Spécifications et essais .. 46

EXERCICES 2 ... 49

CHAPITRE 3 – GRANULATS
3.1 Origine .. 51
 3.1.1 Source naturelle ... 51
 3.1.1.1 Dépôts meubles ... 51
 3.1.1.2 Dépôts consolidés ... 52
 3.1.2 Source artificielle ... 52
3.2 Définition des principaux termes 52
1.8.3 Béton bitumineux.
Le revêtement en béton bitumineux, est le premier des revêtements bitumineux, c’est le seul que nous étudierons en détail. C’est un enrobé préparé à chaud en centrale et posé aussi à chaud. De plus, il répond, comme nous le verrons plus loin, à des exigences particulières qui en font un enrobé de qualité supérieure.
Selon son usage ou l’ordre dans lequel on l’incorpore au revêtement, on le désignera comme une couche :
- de base: s’il est la première de deux ou plusieurs couches (aussi nommé grave-bitume);
- de liaison: lorsqu’il se situe entre deux autres couches;
- de surface: lorsqu’il constitue la dernière de plusieurs couches mises consécutivement en place;
- de roulement ou d’usure: lorsqu’il vient recouvrir en surface un vieux revêtement;
- unique: s’il constitue la seule couche du revêtement;
- de correction: lorsqu’il sert à corriger la surface existante avant la mise en place d’une couche d’usure;
- d’entretien ou de réparation: lorsqu’il est utilisé pour réparer un revêtement existant sans être nécessairement suivi de la mise en place d’une couche de roulement.
Toutefois les gouvernements, les municipalités et certains organismes publics ont souvent leur propre façon de désigner les divers types de béton bitumineux qu’ils utilisent. Par exemple le ministère des Transports du Québec (MTQ) classe les bétons bitumineux en six types, identifiés de EB5 à EB20, ce qui signifie enrobés bitumineux avec granulats de grosseur nominale de 5 à 20 mm (tableau 1.4).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Usages</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Couche de base</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Couche unique</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Couche de surface</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Couche de surface ou couche de correction</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Rapiéçage manuel ou couche de correction</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chape d'entretien</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Nombre minimal de classes granulaires distinctes à utiliser</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Terres (% passant)</td>
<td>28 mm</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 mm</td>
<td>95-100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14 mm</td>
<td>95-90</td>
<td>95-100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 mm</td>
<td>95-95</td>
<td>95-95</td>
<td>95-95</td>
<td>95-95</td>
<td>95-95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 mm</td>
<td>55-55</td>
<td>55-55</td>
<td>55-55</td>
<td>55-55</td>
<td>55-55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3,5 mm</td>
<td>45-45</td>
<td>45-45</td>
<td>45-45</td>
<td>45-45</td>
<td>45-45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,25 mm</td>
<td>30-30</td>
<td>30-30</td>
<td>30-30</td>
<td>30-30</td>
<td>30-30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,63 mm</td>
<td>20-20</td>
<td>20-20</td>
<td>20-20</td>
<td>20-20</td>
<td>20-20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,315 mm</td>
<td>15-15</td>
<td>15-15</td>
<td>15-15</td>
<td>15-15</td>
<td>15-15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,16 mm</td>
<td>10-10</td>
<td>10-10</td>
<td>10-10</td>
<td>10-10</td>
<td>10-10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,08 mm</td>
<td>10-10</td>
<td>10-10</td>
<td>10-10</td>
<td>10-10</td>
<td>10-10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,04 mm</td>
<td>10-10</td>
<td>10-10</td>
<td>10-10</td>
<td>10-10</td>
<td>10-10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,02 mm</td>
<td>10-10</td>
<td>10-10</td>
<td>10-10</td>
<td>10-10</td>
<td>10-10</td>
<td></td>
</tr>
<tr>
<td>Lier (% min.)</td>
<td>4,2</td>
<td>4,7</td>
<td>4,9</td>
<td>5,2</td>
<td>6,0</td>
<td>5,6</td>
<td></td>
</tr>
<tr>
<td>Lier (% max.)</td>
<td>4,8</td>
<td>4,7</td>
<td>4,9</td>
<td>5,2</td>
<td>6,0</td>
<td>5,6</td>
<td></td>
</tr>
<tr>
<td>Fluage (mm)</td>
<td>2-4</td>
<td>2-4</td>
<td>2-4</td>
<td>2-4</td>
<td>2-4</td>
<td>2-4</td>
<td></td>
</tr>
<tr>
<td>Stabilité (% min.)</td>
<td>9000</td>
<td>9000</td>
<td>9000</td>
<td>9000</td>
<td>9000</td>
<td>9000</td>
<td></td>
</tr>
<tr>
<td>Ventes (% max.)</td>
<td>2,0-5,0</td>
<td>2,0-5,0</td>
<td>2,0-5,0</td>
<td>2,0-5,0</td>
<td>2,0-5,0</td>
<td>2,0-5,0</td>
<td></td>
</tr>
<tr>
<td>VMS combiné (% max.)</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>Compacité (% min.)</td>
<td>92</td>
<td>92</td>
<td>92</td>
<td>92</td>
<td>92</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>Compacité (% max.)</td>
<td>92</td>
<td>92</td>
<td>92</td>
<td>92</td>
<td>92</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>Tenue à l’air (% min.)</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 1.4 Exemple de différents types de béton bitumineux (MTQ)
- le devis spécial prime sur le CCG ;
- le cahier des clauses générales prime sur le CCDG.

1.9.2 Cahier des charges et devis généraux

Le ministère des Transports du Québec (MTQ), comme la plupart des gouvernements et des organismes publics, regroupe ses principales directives, règles et règlements relatifs à la construction routière dans un seul document: le Cahier des charges et devis généraux.

Un CCDG sert avant tout à définir d’une manière globale les droits et obligations des deux contractants.

Un tel ouvrage comporte généralement trois grandes parties: la première décrit les définitions, règles et références touchant les soumissions et contrats, ainsi que les responsabilités de chacun, la deuxième porte sur les travaux et leur déroulement et la troisième stipule les exigences sur les matériaux.

C’est ainsi que dans le CCDG du ministère des Transports du Québec (1997), on trouve par exemple :
- la première à la partie 1, section 7;
- la deuxième à la partie 2A, section 16;
- la troisième à la partie C.

À moins qu’il ne soit amendé ou modifié par un document contractuel remis avec le marché, le CCDG fait office de loi; c’est en quelque sorte la bible de l’entrepreneur. Il est régulièrement mis à jour par le client-propriétaire. On y établit clairement que l’entrepreneur est responsable de tous ses travaux. De ce fait, toute intervention du client ne diminue en rien les responsabilités de l’entrepreneur. Aussi vaut-il mieux bien connaître le CCDG pour éviter mésententes et poursuites judiciaires.

1.9.3 Normes- spécifications-exigences

Dans les divers documents contractuels et particulièrement dans le CCDG, en plus de se référer à des spécifications et des exigences, on fait état des normes d’essais ou procédures normalisées d’essais pour juger de la conformité des matériaux et services prévus. Nous allons voir quelles sont les nuances entre ces trois termes en nous attardant d’abord sur la notion de norme, car c’est la plus importante.

En général, une norme est une formule qui définit un type d’objet, un produit, un procédé technique en vue de simplifier, de rendre plus efficace et plus rationnelle la production. Dans le présent document le mot norme désigne plus particulièrement un procédé technique résultant de l’accord de tous les intervenants: producteurs, usagers etc., et qui est accessible au public.

En ce qui concerne les enrobés bitumineux, les principaux organismes dont on utilise ou recommande les normes au Québec sont :
- le Bureau de normalisation du Québec (BNQ);
- le Conseil canadien des normes (CCN);
- l’Office des normes générales du Canada (ONGC);
- l'Association canadienne de normalisation (ACNOR ou CSA);
- l'American Standard for Testing and Materials (ASTM);
- l'American Association of State Highway and Transportation Officials (AASHTO)
- l'International Standards Organization (ISO);
- le Laboratoire des chaussées (LC) du MTQ.

La création du Bureau de normalisation du Québec, qui relève du ministère de l'Industrie et du Commerce, date de 1961. On l’a créé pour uniformiser les normes existantes, adapter les normes étrangères et réglementer la fabrication et l’utilisation de nouveaux produits et techniques.

Les normes NQ touchent pratiquement tous les domaines, dont particulièrement celui sur les Routes et grands travaux du Québec. Un des rôles principaux du BNQ, a été de demeure de réunir des représentants des fabricants et entrepreneurs, des utilisateurs ainsi que des spécialistes, pour obtenir de l’ensemble un consensus sur les sujets abordés. Parmi ceux que le BNQ consulte, signalons : l’Association des constructeurs de routes et grands travaux du Québec (ACRGTQ), le MTQ, la ville de Montréal et d’autres municipalités, des spécialistes des universités, des laboratoires d’essais, des firmes d’ingénieurs-conseils, etc.

Chaque norme NQ est identifiée par des lettres et sept chiffres sous lesquels figure la date de parution: XX 0000-000/DATEx. Les lettres indiquent l’origine de la norme. Par exemple:
NQ ou BNQ = Norme québécoise (BNQ)
CAN = Norme canadienne (CCN ou ONGC ou ACNOR)
ASTM ou AASHTO = Norme américaine (ASTM)
NF = Norme française
BS = Norme britannique
ISO = Norme internationale (ISO)
LC = Norme du Laboratoire des Chaussées (MTQ)

Dans les normes NQ, les chiffres après les lettres servent à identifier le produit ou sa classe. Par exemple:
1809 pour les travaux de construction routière;
2300 pour les essais sur les enrobé bitumineux et les liants;
2320 pour les spécifications sur les liants;
2560 pour les essais sur les granulats.

Les trois derniers chiffres sont le numéro de la norme elle-même. Par exemple :
NQ 2560-015 = Norme québécoise sur les granulats : « Réduction en laboratoire d’un échantillon de granulats ».

Vient en dernier la date de parution. Comme une norme peut toujours être modifiée (avec l’accord de tous les intéressés), il faut s’assurer d’utiliser celle dont la date est la plus récente.

Au Québec, à moins d’avis contraire, les normes NQ ont priorité sur toutes les autres. En l’absence de normes québécoises sur le sujet, il faut suivre les normes CCN, ACNOR ou ONGC, et sinon les normes ASTM ou AASHTO. En l’absence d’essai normalisé pour mesurer la propriété d’un matériau, c’est la procédure du Laboratoire des chaussées du MTQ qui est recommandée.
D'une portée plus restreinte qu'une norme, une spécification est en quelque sorte un document préparé par le client ou l'utilisateur qui indique les moyens (essais normalisés) et les critères (propriétés et exigences) suivant lesquels la conformité peut être vérifiée. L'exigence pour sa part, est l'indication des limites acceptables en ce qui concerne chacune des propriétés spécifiées.

En formulant une spécification, on doit donc, en plus de désigner la ou les propriétés qu'elle touche, fournir le nom et l'identification de la norme retenue pour l'évaluer. Au chapitre suivant on trouvera des exemples de spécifications (tableaux 2.2, 2.3, 2.4, 2.5).

La différence la plus importante entre une norme, une spécification ou une exigence est qu'une norme exige l'accord de tous les intervenants, ce qui n'est pas le cas avec une spécification ou une exigence.

EXERCICES 1

E 1.1 Quelle est la différence essentielle entre la structure d'une route et son infrastructure ?

E 1.2 Quelle est la différence entre la structure d'une route et la chaussée au sens large ?

E 1.3 Quelle est la différence entre la chaussée au sens restreint et le revêtement ?

E 1.4 À part le liant, quelle est la différence entre le béton et le béton bitumineux ?

E 1.5 Quel est en résumé le rôle du revêtement dans une chaussée ?

E 1.6 Quelles informations faut-il posséder avant de concevoir une chaussée ?

E 1.7 À quelle étape de la construction d'une route se situe la fabrication d'un enrobé bitumineux ?

E 1.8 Donnez un synonyme de revêtement de béton de ciment.

E 1.9 Nommez quelques-uns des avantages des revêtements souples.

E 1.10 Quel principe de base caractérise le revêtement souple ?

E 1.11 Quelle est la différence dans un béton bitumineux, entre couche de surface, couche de roulement et couche d'usure ?

E 1.12 Qu'est ce qu'un EB 10S ?

E 1.13 De quoi et dans quelles proportions est constitué, selon la masse, le béton bitumineux ?

E 1.14 Nommez les qualités recherchées d'un revêtement routier.

E 1.15 Nommez trois documents annexés à un marché de travaux publics.

E 1.16 Nommez deux documents faisant partie intégrante du contrat, et que l'entrepreneur devrait déjà avoir en sa possession.

E 1.17 Que contient principalement un Cahier des charges générales ?

E 1.18 Quel document indique en détail toutes les quantités d'enrobés à mettre en place, rue par rue, tronçon par tronçon ?

E 1.19 Nommez deux documents qui ont priorité sur le CCG.

E 1.20 Mis à part le BNQ, nommez deux organismes qui publient des normes sur les enrobés bitumineux.

E 1.21 Que signifient les premières lettres d'identification d'une norme ?

E 1.22 Quelle est la différence de base entre une norme et une spécification ?
Figure 2.1 Structure physico-chimique du bitume

2.3.3 Principaux types de bitume
Les bitumes obtenus par distillation du pétrole brut et destinés aux revêtements routiers sont raffinés pour répondre à des spécifications particulières; c'est le cas du bitume routier qui entre dans le béton bitumineux, et qu'on nôme alors plus simplement: bitume. À l'état pur, les bitumes sont trop visqueux pour être utilisés tel quels, on doit abaisser leur viscosité par chauffage (120 °C à 160 °C). Mais on connaît deux autres façons de rendre le bitume temporairement (jusqu'à ce qu'il retrouve son état de base) fluide pour certains usages.
- on peut procéder par solubilisation, habituellement dans un hydrocarbure, on parle alors de bitumes fluidifiés ou liquides.
- on peut aussi avoir recours à l'émulsification dans l'eau. On obtient alors les émulsions de bitume.
- lorsqu'on ajoute un polymère à l'un ou l'autre de ces liants pour améliorer une des ses propriétés, on parle de bitumes ou liants modifiés.

2.3.4 Fabrication
On obtient les bitumes en distillant du pétrole brut, cette opération permettant de séparer les divers hydrocarbures constituant le pétrole. Mais pour obtenir un bitume raffiné, le résidu est redistillé sous vide. Ce procédé permet d'augmenter graduellement la température pour produire des bitumes répondant aux caractéristiques exigées. On peut également oxyder
le résidu par soufflage d'air et ainsi en changer la composition physico-chimique (par transformation d'une partie des malthènes en asphaltilènes). On arrive ainsi à fabriquer diverses classes limites de bitume répondant aux exigences sur les températures maximales et minimales d'utilisation demandées. Ainsi un bitume de classe PG 52-34, (PG pour Performance Grade) est un bitume routier capable de permettre à l’enrobé de supporter une température maximale de 52°C avant de se déformer et une température minimale de −34°C avant de se fissurer. (figure 2.2).

Figure 2.2 Fabrication des liants bitumineux

2.3.5 Caractéristiques
On reconnaît le bitume routier à ses principales caractéristiques soit:
- sa couleur noire;
- son inertie chimique;
- son imperméabilité à l'eau;
- sa susceptibilité à la température;
- son pouvoir d'adhésion et de rétention.

2.3.6 Propriétés
Les différents bitumes possèdent tous les mêmes propriétés, mais à des degrés divers. Parmi les propriétés que des essais nous permettent de mesurer, mentionnons :
- l'inflammabilité (point éclair);
- la viscosité (Brookfield) ou consistance;
- la stabilité (stabilité au stockage);
- la ductilité (rapport de force) ou élasticité (recouvrance);
- la résistance au vieillissement (étuvage en couche mince);
- la pureté (solubilité);
- la susceptibilité thermique (cisaillage dynamique);
- la cohésion (tension directe);

2.3.7 Spécifications et essais sur les bitumes routiers
Nous avons vu au chapitre précédent que dans les documents contractuels qui accompagnent le marché, le client fait état de spécifications, normes et procédures d'essais normalisés (article 1.9.3). Ces spécifications portent, entre autres, sur le bitume et plus précisément sur ses propriétés. Le client exige tel type de bitume ayant telle et telle propriété et à tel degré. Le tableau 2.1 (MTQ 1996) donne un exemple de spécifications portant sur les bitumes. Pour classifier un bitume routier on se base sur ses performances.
Pour vérifier si le bitume produit ou fourni correspond à ces spécifications, les organismes de normes ont mis au point des méthodes d'essais normalisées qui permettent de mesurer les propriétés d'un bitume. Il est donc indispensable de bien connaître ces méthodes d'essais. Nous allons ci-dessous voir brièvement les plus courantes.

Tableau 4101-1
Exigences et méthodes d'essais pour la classification des bitumes

<table>
<thead>
<tr>
<th>Essai</th>
<th>Classe de performance</th>
<th>Méthodes d'essais</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PG 52–54</td>
<td>PG 52–40</td>
</tr>
<tr>
<td></td>
<td>PG 58–54</td>
<td>PG 58–34</td>
</tr>
<tr>
<td></td>
<td>PG 58–40</td>
<td>PG 64–40</td>
</tr>
<tr>
<td></td>
<td>PG 70–34</td>
<td></td>
</tr>
<tr>
<td>Bitume d'origine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point éclair</td>
<td>> 230 °C</td>
<td>> 230 °C</td>
</tr>
<tr>
<td></td>
<td>> 230 °C</td>
<td>> 230 °C</td>
</tr>
<tr>
<td></td>
<td>> 230 °C</td>
<td>> 230 °C</td>
</tr>
<tr>
<td></td>
<td>> 230 °C</td>
<td>> 230 °C</td>
</tr>
<tr>
<td></td>
<td>> 230 °C</td>
<td>> 220 °C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ASTM D 62</td>
</tr>
<tr>
<td>Viscosité Brookfield à 155 °C</td>
<td>< 3 Pa • s</td>
<td>< 3 Pa • s</td>
</tr>
<tr>
<td></td>
<td>< 3 Pa • s</td>
<td>< 3 Pa • s</td>
</tr>
<tr>
<td></td>
<td>< 3 Pa • s</td>
<td>< 3 Pa • s</td>
</tr>
<tr>
<td></td>
<td>< 3 Pa • s</td>
<td>< 3 Pa • s</td>
</tr>
<tr>
<td></td>
<td>< 3 Pa • s</td>
<td>< 3 Pa • s</td>
</tr>
<tr>
<td></td>
<td>< 3 Pa • s</td>
<td>AASHTO TP 48</td>
</tr>
<tr>
<td>Stabilité au stockage</td>
<td>± 1 °C</td>
<td>± 1 °C</td>
</tr>
<tr>
<td></td>
<td>± 1 °C</td>
<td>± 1 °C</td>
</tr>
<tr>
<td></td>
<td>± 1 °C</td>
<td>± 1 °C</td>
</tr>
<tr>
<td></td>
<td>± 1 °C</td>
<td>± 1 °C</td>
</tr>
<tr>
<td></td>
<td>± 1 °C</td>
<td>± 1 °C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LC 25-003</td>
</tr>
<tr>
<td>Recouvrance d'élasticité à 10 °C, 20 cm, 5 cm/min</td>
<td>≥ 25 %</td>
<td>≥ 25 %</td>
</tr>
<tr>
<td></td>
<td>≥ 25 %</td>
<td>≥ 50 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 50 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 50 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LC 25-005</td>
</tr>
<tr>
<td>Solubilité dans le tétrachlorure de carbone à 25 °C</td>
<td>≥ 99,00 %</td>
<td>≥ 99,00 %</td>
</tr>
<tr>
<td></td>
<td>≥ 99,00 %</td>
<td>≥ 99,00 %</td>
</tr>
<tr>
<td></td>
<td>≥ 99,00 %</td>
<td>≥ 99,00 %</td>
</tr>
<tr>
<td></td>
<td>≥ 99,00 %</td>
<td>≥ 99,00 %</td>
</tr>
<tr>
<td></td>
<td>≥ 99,00 %</td>
<td>≥ 99,00 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ASTM D 2042</td>
</tr>
<tr>
<td>DSR 10 Radi, à 7°C</td>
<td>52 °C</td>
<td>52 °C</td>
</tr>
<tr>
<td>G70n S</td>
<td>≥ 1,00 kPa</td>
<td>≥ 1,00 kPa</td>
</tr>
<tr>
<td></td>
<td>≥ 58 °C</td>
<td>≥ 58 °C</td>
</tr>
<tr>
<td></td>
<td>≥ 58 °C</td>
<td>≥ 58 °C</td>
</tr>
<tr>
<td></td>
<td>≥ 58 °C</td>
<td>≥ 64 °C</td>
</tr>
<tr>
<td></td>
<td>≥ 64 °C</td>
<td>≥ 70 °C</td>
</tr>
<tr>
<td></td>
<td>≥ 70 °C</td>
<td>AASHTO TP 5</td>
</tr>
<tr>
<td>Fente en masse à court terme (RTFOT)</td>
<td>≤ 1,00 %</td>
<td>< 1,00 %</td>
</tr>
<tr>
<td></td>
<td>< 1,00 %</td>
<td>< 1,00 %</td>
</tr>
<tr>
<td></td>
<td>< 1,00 %</td>
<td>< 1,00 %</td>
</tr>
<tr>
<td></td>
<td>< 1,00 %</td>
<td>< 1,00 %</td>
</tr>
<tr>
<td></td>
<td>< 1,00 %</td>
<td>< 1,00 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ASTM D 2872</td>
</tr>
<tr>
<td>DSR 10 Radi, à 7°C</td>
<td>52 °C</td>
<td>52 °C</td>
</tr>
<tr>
<td>G70n S</td>
<td>≥ 2,2 kPa</td>
<td>≥ 2,2 kPa</td>
</tr>
<tr>
<td></td>
<td>≥ 2,2 kPa</td>
<td>≥ 2,2 kPa</td>
</tr>
<tr>
<td></td>
<td>≥ 2,2 kPa</td>
<td>≥ 2,2 kPa</td>
</tr>
<tr>
<td></td>
<td>≥ 2,2 kPa</td>
<td>≥ 2,2 kPa</td>
</tr>
<tr>
<td></td>
<td>≥ 2,2 kPa</td>
<td>≥ 2,2 kPa</td>
</tr>
<tr>
<td></td>
<td>≥ 2,2 kPa</td>
<td>≥ 70 °C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AASHTO TP 5</td>
</tr>
</tbody>
</table>

Tableau 2.1 Exemple de spécifications portant sur les bitumes routiers
2.3.7.1 Détermination de la température H-Essai DSR (AASH'TO 11-5)

BUT
Mesurer la température limite au dessus de laquelle le bitume routier (employé comme tel ou modifié) est susceptible de présenter des phénomènes de déformation irréversible.

PROCÉDURE SOMMAIRE :
Cet essai consiste tout d'abord, à l'aide d'un rhéomètre à cisaillement dynamique (DSR), à soumettre la prise d'essai à des déformations sinusoïdales à la fréquence de 10 rad/s. Puis on mesure, pour deux températures normalisées (préalablement choisies parmi les suivantes : 40 °C, 46 °C, 52 °C, 58 °C, 64 °C, 70 °C et 76 °C, le module G^* et l'angle de phase δ du liant.

SIGNIFICATION PRATIQUE :
Les résultats caractérisent le comportement viscoélastique du bitume et sa susceptibilité à la déformation. Ils permettent de déterminer la température normalisée pour laquelle $G^*/\sin \delta \geq 50$ kPa.

Figure 2.3 Rhéomètre à cisaillement dynamique (DSR) LC-MTQ
2.3.7.2 Détermination de la température L – Essai BBR (AASHTO TP-1)
BUT :
Mesurer la température limite sous laquelle le bitume routier (employé comme tel ou modifié) est susceptible de se fissurer par retrait thermique.

PROCÉDURE SOMMAIRE :
Cet essai consiste tout d’abord, à l’aide d’un rhéomètre de flexion de poutre, à appliquer pendant 60 secondes une charge constante sur la poutre de la prise d’essai de bitume, puis à mesurer pour différentes températures les flexions de la poutre.

SIGNIFICATION PRATIQUE :
Les mesures relevées permettent de calculer pour la charge appliquée le module de rigidité S puis la température pour laquelle $S \leq 300$ Mpa et $m \geq 0,300$

![Diagram](image)

Figure 2.4 Rhéomètre de flexion de poutre BBR (LC-MTQ)

2.3.7.3 Détermination de la viscosité Brookfield (AASHTO TP-48)
BUT :
Mesurer la résistance à l’écoulement ou la consistance à haute température d’un bitume routier.

PROCÉDURE SOMMAIRE :
Réalisé à 135°C, l’essai consiste à mesurer la force requise pour maintenir, à une vitesse de rotation constante, un plongeur circulaire lorsque descendue dans la prise
d’essai d’un échantillon de bitume routier amené préalablement à 135°C et maintenue ainsi dans un bain à température constante. (figure 2.5).

SIGNIFICATION PRATIQUE :
Le résultat s’exprime en Pa*s et mesure la résistance maximale à l’écoulement, soit à la maniabilité ou au pompage des bitumes routiers.

Principe de fonctionnement du viscosimètre

2.3.7.4 Détermination de la viscosité absolue (ASTM D-2171)
BUT :
Mesurer la consistance ou résistance à l’écoulement d’un bitume fluidifié ou d’un bitume routier à la température maximale que peut généralement atteindre un revêtement bitumineux (60 °C).

PROCÉDURE SOMMAIRE :
Réalisé à 60 °C, l’essai consiste à mesurer au dixième de secondes près, quel temps un volume donné de bitume met à s’écouler dans le tube capillaire d’un viscosimètre. Le
2.3.7.12 Détermination du point de fragilité Fraas (IP-80)
BUT :
Donner une indication sur la fragilité d'un bitume à basse température.

PROCÉDURE SOMMAIRE :
On étale sur une mince lame d'acier un film de bitume de 0,5 mm. Dans une enceinte à température contrôlée, on soumet la prise d'essai à des flexions répétées en même temps qu'on abaisse la température de 1° C par minute. Dès qu'une fissure apparaît sur le film de bitume, on note la température; c'est le point de fragilité FRAAS.

SIGNIFICATION PRATIQUE :
Le résultat est la température à laquelle un bitume risque de se fissurer quand il est soumis à certaines contraintes mécaniques. Mais ce n'est pas celle à laquelle l'enrobé, constitué de ce bitume, se fissurera. Cependant il existe une bonne corrélation entre cette température et celle de la fissuration effective de l'enrobé bitumineux.

2.4 LES BITUMES FLUIDIFIÉS
Comme on l'a vu en 2.3.3, les bitumes fluidifiés sont des liants bitumineux qu'on prépare en dissolvant un bitume dans un solvant hydrocarboné, en l'occurrence un des distillats du pétrole brut. On en connait plusieurs variétés et ils donnent également lieu à des essais normalisés.

2.4.1 Classes de bitumes fluidifiés
Selon la vitesse d'évaporation du solvant utilisé, on répartit les bitumes fluidifiés en trois classes (fig. 2.12), soit les bitumes fluidifiés :
- À prise rapide, les RC (Rapid Curing).
 Le solvant utilisé est du NAPHTHE (ou de la gazoline), et le bitume dissous est de la classe PG 58-28.
- À prise semi-rapide, les MC (Medium Curing).
 Comme solvant, on emploie du KÉROSÈNE, et le bitume est un PG 52-34.
- À prise lente, les SC (Slow Curing).
 Le solvant présent est une HUILE LEGÈRE, avec un bitume PG 58-40.

Il existe aussi un bitume fluidifié spécial, à prise mi-rapide le RM. Ce bitume s'obtient en mélangant un bitume fluidifié à prise rapide avec un autre à prise semi-rapide. Il est mieux connu sous son nom anglais Special Primer.

2.4.2 Sous-classes ou classement selon la viscosité
Chaque classe principale des bitumes fluidifiés se subdivise selon sa viscosité cinématique à 60° C en cinq sous-classes. Cette viscosité dépend en grande partie de la teneur en bitume (bitume résiduel) du bitume fluidifié; elle est donc en même temps une indice de cette teneur. On a les :
- RC,MC et SC-30 (50 % de bitume résiduel)
- RC,MC et SC-70 (55 %)
- RC,MC et SC-250 (65 % " " ")
- RC,MC et SC-800 (75 % " " ")
- RC,MC et SC-3000 (80 % " " ")

Remarque:
Le bitume résiduel est le bitume routier de base qui demeure après la prise (évaporation du solvant). Le nombre qui suit les lettres sert à subdiviser ces liants selon la viscosité cinématique à 60° C. (exemple : un MC-250 est bitume fluidifié à prise moyenne de viscosité 250 cSt à 60° C, donc contenant 65 % de bitume PG 52-34)

Figure 2.12 Classes de bitumes fluidifiés

2.4.3 Usages et spécifications
Les bitumes fluidifiés sont surtout utilisés comme liants des enrobés à froid (MC-250, RC-800). Dans les régions froides, tard l'automne et tôt le printemps, on les recommande (RM-20, RC-30, RC-70) pour remplacer les émulsions de bitume comme enduits d'accrochage ou d'amorçage, car ils résistent mieux au gel (tableau 2.6).
2.5.4 Usages et spécifications
On emploie le plus souvent l'émulsion CRS-1 (émulsion cationique à rupture rapide) soit comme liant d'accrochage ou soit dans les enduits superficiels (traitements bitumineux de surface) à granulométrie serrée. Les émulsions de type HF sont réservées aux enduits superficiels à granulométrie étalée. (tableau 2.6)
Le tableau 2.4 indique à quelles sortes de spécifications une émulsion peut être soumise.

<table>
<thead>
<tr>
<th>Catégories</th>
<th>Rupture moyenne</th>
<th>Rupture lente</th>
<th>Méthode d'essai</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CMS-2</td>
<td>CMS-2h</td>
<td>CSS-1</td>
</tr>
<tr>
<td>Viscosité Saybolt Furol à 25 °C, (sec)</td>
<td>20 100 20 100 20 100</td>
<td>20 100 20 100</td>
<td>20 100 20 100</td>
</tr>
<tr>
<td>Viscosité Saybolt Furol à 50 °C, (sec)</td>
<td>20 450 20 450</td>
<td>20 450 20 450</td>
<td>20 450 20 450</td>
</tr>
<tr>
<td>Stabilité au stockage 24 h, (% en masse)</td>
<td>1 1 1 1</td>
<td>1 1 1 1</td>
<td>1 1 1 1</td>
</tr>
<tr>
<td>Charges des particules</td>
<td>positive</td>
<td>positive</td>
<td>positive</td>
</tr>
<tr>
<td>Essai granulométrique % de refus sur tamis no 1000, (% en masse)</td>
<td>0,10 0,10</td>
<td>0,10 0,10</td>
<td>0,10 0,10</td>
</tr>
<tr>
<td>Distillation à 260 °C :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- % résidu, en masse</td>
<td>65 65 55 55</td>
<td>65 65 55 55</td>
<td>65 65 55 55</td>
</tr>
<tr>
<td>- % d'huile, en volume</td>
<td>6 6 6 6</td>
<td>6 6 6 6</td>
<td>6 6 6 6</td>
</tr>
<tr>
<td>Essais sur résidu :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Pénétration à 25 °C, 100 g, 5s, (0,1mm)</td>
<td>100 250 40 90 100 250 40 90</td>
<td>100 250 40 90 100 250 40 90</td>
<td>100 250 40 90 100 250 40 90</td>
</tr>
<tr>
<td>- Ductilité à 25 °C, (cm)</td>
<td>40 40 40 40</td>
<td>40 40 40 40</td>
<td>40 40 40 40</td>
</tr>
<tr>
<td>- Solubilité dans le trichloroéthylène (% en masse)</td>
<td>97,5 97,5 97,5 97,5</td>
<td>97,5 97,5 97,5 97,5</td>
<td>97,5 97,5 97,5 97,5</td>
</tr>
</tbody>
</table>

Tableau 2.4 Exemple de spécifications portant sur les émulsions cationiques (LC-MTQ)

2.5.5 Essais normalisés sur les émulsions de bitume
Comme pour les bitumes liquides, il y a des essais particuliers aux émulsions de bitume.

2.5.5.1 Distillation
BUT :
Déterminer la quantité de bitume (bitume résiduel) dans l'émulsion et le récupérer pour procéder à certains essais.

PROCÉDURE SOMMAIRE :
Dans un contenant en métal, taré avec tous les instruments qui lui sont rattachés, on verse 200 g de l'émulsion, puis on réchauffe graduellement la prise d'essai, au moyen d'un anneau
CONSTRUCTION NEUVE - RECONSTRUCTION

EB-20 • EB-14 • EB-10S • EB-10C • ESG-10 • ESG-14

Choix des composantes • Recommandations

<table>
<thead>
<tr>
<th>TYPE DE ROUTE</th>
<th>VOLUME DE CIRCULATION</th>
<th>BITUME</th>
<th>COUCHE DE ROULEMENT</th>
<th>COUCHE DE BASE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DJMA</td>
<td>ECAS</td>
<td>ZONE 1 PG</td>
<td>ZONE 2 PG</td>
</tr>
<tr>
<td>Autoroutes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nationales</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Régionales et Collectrices</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autres usages</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Réseau de camionnage

Note : Lorsque la présence d'ornières justifie une intervention sur la couche d'usure, l'essai de résistance à l'orniérage est recommandé. Généralement, le bitume doit être modifié pour obtenir un intervalle H-L > 90.
EXERCICES 2
E 2.1 Nommez les deux grandes familles de liants hydrocarbonés.
E 2.2 De quel produit naturel proviennent les liants bitumineux ?
E 2.3 Nommez les deux sources de liants bitumineux et donner un exemple pour chacune.
E 2.4 Comment au Québec obtient-on le bitume ?
E 2.5 Donnez deux utilisations du bitume dans l'Antiquité.
E 2.6 Quelle est la différence entre : bitume routier et bitume fluidifié ? bitume fluidifié et émulsion de bitume ? bitume routier et liant modifié ? bitume et asphalte ?
E 2.7 Nommez les deux éléments chimiques communs à la fois aux goudrons, aux bitumes routiers, aux bitumes fluidifiés et aux émulsions de bitume.
E 2.8 Physiquement parlant, quels sont les deux principaux constituants des bitumes ?
E 2.9 Quelles sont les principales caractéristiques des bitumes routiers ?
E 2.10 Nommez cinq propriétés variables d'une classe ou d'un type de bitume à l'autre.
E 2.11 Selon quelle propriété classe-t-on les bitumes routiers ?
E 2.12 Que mesure l'essai DSR (température H) ?
E 2.13 En quoi consiste l'essai BBR (température L)?
E 2.14 Comment s'exprime la viscosité Brookfield et sur quelles classes de liant hydrocarboné la mesure-t-on ?
E 2.15 Quel essai permet d'obtenir un indice de durcissement ou de vieillissement d'un bitume routier ?
E 2.16 Qu'indique le point d'éclair ?
E 2.17 En quoi consiste l'essai « Détermination du point de ramollissement (bille-anneau) » ?
E 2.18 Quelle classe particulière de bitume soumet-on à l'essai « Détermination de la E 2.19 Nommez les principales classes de bitumes fluidifiés et le solvant hydrocarboné utilisé.
E 2.20 Nommez deux essais propres aux bitumes fluidifiés.
E 2.21 Qu'est ce qu'une émulsion de bitume ?
E 2.22 Que signifie RS1 ? CMS2 ?
E 2.23 Qu'est ce qu'un bitume ou liant modifié ?
E 2.24 Dans quel but précis ont été mis au point les bitumes polymères ?
E 2.25 Quelles propriétés particulières font l'objet de spécifications dans l'acceptation d'un bitume polymère ?
- *Granulométrie résultante ou combiné granulométrique* : Granulométrie résultant de la combinaison de divers calibres de granulats selon des proportions connues.

3.3 CLASSIFICATION

En construction routière les granulats se classent d'abord selon leur granularité, soit la répartition de leurs particules suivant leur diamètre. Mais certains utilisateurs les regroupent en plus selon leur qualité. Voici quatre façons de classer les granulats.

3.3.1 Classification générale

Les ingénieurs, pour qui les granulats font partie du sol, se réfèrent à la Classification unifiée des sols, laquelle considère les granulats comme des roches non consolidées (dépôts meubles). Cette classification classe les granulats en :
- *cailloux* : quand plus de 50% des particules sont retenues au tamis de 80 mm.
- *graviers* : quand plus de 50% des particules se situent entre les tamis de 80 et de 5 mm.
- *sables* : quand plus de 50% des particules se situent entre les tamis de 5 mm et de 80 μm.
- *silts ou limons* : quand plus de 50% des particules passent au tamis de 80 μm (dont la majorité sont retenues au tamis de 325 μm) et démontrent une plasticité faible ou nulle ainsi qu'une résistance faible ou nulle après séchage à l'air ambiant.
- *argiles* : quand plus de 50% des particules passent au tamis de 80 μm (dont la majorité passent aussi au tamis de 315 μm) et qui démontrent une plasticité qui varie avec leur teneur en eau, en même temps qu'une forte résistance après séchage à l'air ambiant.

REMARQUE:

Cette classification générale se ramifie en classes intermédiaires à double appellation comme les graviers-sabloneux, les sables-graveleux, les sables-silteux, les sables-argileux. Ces noms composés indiquent que la classe n'est pas pure et contient une forte proportion de particules plus grosses ou plus petites.

3.3.2 Classification selon le calibre

En général les producteurs et les entrepreneurs classent les granulats d'après leur calibre, c'est-à-dire l'intervalle en millimètres des grossesse nominale et minimale des particules. Par exemple : Un 5-20 mm est un granulat dont le diamètre des particules est compris entre 5 et 20 mm. (tableau 3.1)
<table>
<thead>
<tr>
<th>Classes granulaires</th>
<th>5-10</th>
<th>5-14</th>
<th>5-20</th>
<th>10-14</th>
<th>10-20</th>
<th>14-20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamis (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>100</td>
<td>85-99</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>20</td>
<td>100</td>
<td>85-99</td>
<td>33-66*</td>
<td>80-99</td>
<td>25-75*</td>
<td>1-20</td>
</tr>
<tr>
<td>14</td>
<td>85-99</td>
<td>33-66</td>
<td>1-20</td>
<td>1-15</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1-15</td>
<td>1-15</td>
<td>1-15</td>
<td><3</td>
<td><3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td><3</td>
<td><3</td>
<td><3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,5</td>
<td><3</td>
<td><3</td>
<td><3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*12,5 mm

<table>
<thead>
<tr>
<th>Classes granulaires</th>
<th>2,5-5</th>
<th>2,5-10</th>
<th>2,5-14</th>
<th>2,5-20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamis (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>100</td>
<td>85-99</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>10</td>
<td>85-99</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>85-99</td>
<td>33-66*</td>
<td>33-66*</td>
</tr>
<tr>
<td>5</td>
<td>85-99</td>
<td>33-66*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,5</td>
<td>1-15</td>
<td>1-15</td>
<td>1-15</td>
<td>1-15</td>
</tr>
<tr>
<td>1,25</td>
<td><5</td>
<td><3</td>
<td><3</td>
<td><3</td>
</tr>
</tbody>
</table>

*6,3 mm

*8 mm

*11,5 mm

<table>
<thead>
<tr>
<th>Classes granulaires</th>
<th>0-2,5</th>
<th>0-5</th>
<th>0-10</th>
<th>0-14</th>
<th>0-20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamis (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td>100</td>
<td>85-99</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>100</td>
<td>85-99</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>100</td>
<td>85-99</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>100</td>
<td>85-99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,5</td>
<td></td>
<td>85-99</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 3.1 Exemple de classification de granulats par calibre ou classe granulaire
3.3.3 Classification pour étude des enrobés bitumineux
Quand on étudie les enrobés bitumineux en laboratoire, on classe les granulats en trois catégories, soit :
- Le *gros granulat* : À savoir la partie du granulat qui est retenue au tamis de 5 mm, et qu’on appelle quelquefois « fraction grossière ». Peut aussi désigner, avant enrobage, le granulat dont la majorité des particules sont retenues au tamis de 5 mm.
- Le *granulat fin* : C'est-à-dire la partie du granulat dont les particules se situent entre les tamis de 5 mm et de 80 μm et qu’on appelle parfois « fraction fine ». On désigne aussi de la sorte, avant enrobage, le granulat dont la majorité des particules se situe entre ces mêmes tamis.
- Le *granulat très fin ou fines* : C’est la partie du granulat qui passe au tamis de 80 μm. Avant enrobage, on l’appelle aussi « fines d’ajout » ou plus simplement filler, lorsque la majorité des particules passe au tamis de 80 μm et est ajoutée au mélange de granulats.

3.3.4 Classification qualitative
Plusieurs clients classent arbitrairement les granulats en deux ou plusieurs catégories, selon des caractéristiques précises, catégories reposant sur des exigences bien définies. Le tableau 3.2 en donne un exemple.

<table>
<thead>
<tr>
<th>Caractéristiques Intrinsèques</th>
<th>Méthodes d'essais</th>
<th>Catégories de gros granulats</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Micro-Deval (MD)</td>
<td>NQ2560-070</td>
<td>≤ 15</td>
</tr>
<tr>
<td>Los Angeles (LA)</td>
<td>BNQ2550-400</td>
<td>≤ 35</td>
</tr>
<tr>
<td>Micro-Deval et Los Angeles (MD + LA)</td>
<td></td>
<td>≤ 40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Caractéristiques de fabrication</th>
<th>Méthodes d'essais</th>
<th>Catégories de gros granulats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragmentation (%)</td>
<td>LC21-100</td>
<td>a</td>
</tr>
<tr>
<td>Particules plates (%)</td>
<td>NQ2560-265</td>
<td>≤ 25</td>
</tr>
<tr>
<td>Particules allongées (%)</td>
<td>NQ2560-265</td>
<td>≤ 40</td>
</tr>
</tbody>
</table>

Tableau 3.2 Catégories de gros granulats pour béton bitumineux (MTQ)

3.4 PROPRIÉTÉS
Pour qu’un granulat soit employé dans un béton bitumineux, il doit présenter des propriétés précises. Certaines de ces propriétés concernent les particules dont est formé le granulat, d’autres tiennent à leur ensemble, à savoir le granulat lui-même.

3.4.1 Particules
Les propriétés qui nous intéressent chez les particules sont :
- leur *absorptivité* ou porosité superficielle à l’eau et/ou au bitume;
- leur *dureté*, soit leur résistance à se laisser rayer;
3.6 SPÉCIFICATIONS DES GRANULATS POUR BÉTON BITUMINEUX

Le tableau 3.4 donne un exemple de spécifications portant sur des caractéristiques complémentaires des granulats pour béton bitumineux.

<table>
<thead>
<tr>
<th>Caractéristiques</th>
<th>Méthode d'essais</th>
<th>Couche de base</th>
<th>Couche de liaison</th>
<th>Couche de roulement</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROS GRANULATS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propreté (Part. < 80 µm Carrière) (%) max.</td>
<td>BNO-2500-350</td>
<td>1,5</td>
<td>1,5</td>
<td>1,5</td>
</tr>
<tr>
<td>Coefficient polissage accéléré (min.)</td>
<td>LC 21-102</td>
<td></td>
<td></td>
<td>0,45 à 0,50</td>
</tr>
<tr>
<td>GRANULATS FINS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mottes d'argile et particules friables (%) max.</td>
<td>BNO-2500-250</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Tableau 3.4 Exemple de spécifications portant sur des caractéristiques complémentaires des granulats pour béton bitumineux (MTQ)

3.7 ESSAIS SUR LES GRANULATS UTILISÉS DANS LES ENROBÉS BITUMINEUX

De la même façon que le bitume, on soumet le granulat à différents essais pour en vérifier les propriétés. Nous exposons ci-dessous ces essais en mentionnant brièvement leur BUT et leur SIGNIFICATION PRATIQUE. Pour la marche à suivre, on se référera au manuel Technologie des granulats (voir bibliographie) ou aux normes elles-mêmes.

3.7.1 Réduction des échantillons en laboratoire

BUT

Réduire la masse de l'échantillon à la masse prescrite pour la prise d'essai (quantité minimale prévue pour l'essai demandé).
Dans les deux chapitres précédents, nous avons vu le bitume et le granulat. Les deux ensemble forment l'enrobé, lequel doit aussi répondre à certaines exigences. Parmi les caractéristiques ou qualités qu'on exige d'un enrobé, certaines dépendent de la mise en œuvre, mais d'autres tiennent à la composition même de l'enrobé. Aussi, tout comme ses deux constituants, un enrobé doit être soumis à des essais pour en vérifier les qualités. Dans le marché que signe un entrepreneur, des clauses techniques au Cahier des charges et devis stipulent quelle méthode et quels essais devront être employés pour ce faire. L'entrepreneur doit prendre connaissance de ces clauses avant de déterminer dans quelles proportions bitume et granulats seront combinés. Nous allons voir dans ce chapitre quelles sont ces méthodes et essais.

4.1 MÉTHODES D'ANALYSE

Ce qu'on appelle ici une méthode est essentiellement un essai ou, plus souvent, une série d'essais normalisés qu'on exécute pour mesurer les propriétés des enrobés. Il existe plusieurs méthodes; elles ont été mises au point dans différents pays et pour diverses sortes d'enrobés. Certaines servent uniquement à l'étude et la formulation des enrobés en laboratoire.

Les méthodes diffèrent sur plusieurs points comme le mode de préparation et la dimension des éprouvettes, les paramètres mesurés, l'appareillage utilisé, la température de réalisation des essais, etc. Mais toutes ont pour but la mesure de la résistance de l'enrobé aux sollicitations du trafic, qu'on l'appelle stabilité, cohésion, résistance à l'ornierage ou autrement. Au Québec suivant les besoins, on utilise plus que l'une ou l'autre des deux méthodes que nous allons décrire brièvement ci-dessous.

4.1.1 Méthode du Laboratoire des chaussées (MTQ)

La méthode du Laboratoire des chaussées du ministère des Transports Québec est destinée à la formulation des enrobés bitumeux à haute performance. Elle repose sur un essai en particulier : « L'essai à la presse à cisaillement giratoire ». À cet essai s'ajoute, lors de la formulation d'un enrobé, l'essai de « Tenue à l'eau (par trempage) » et si demandé, l' « Essai à l'orniére » qui sert surtout à valider la formule de l'enrobé.

4.1.1.1 Tenue à l'eau par trempage (LC 26-001)

L'essai de « Tenue à l'eau (par trempage) » est réalisé sur des éprouvettes de béton bitumeux préparés selon la méthode Marshall (voir 4.2.2) ; excepté que le
compactage ne nécessite que 40 coups de dame au lieu de 60. Il vise à déterminer le % de résistance à la compression ou « stabilité Marshall » (voir 4.2.5) conservée par les éprouvettes après leur immersion sous vide dans l’eau à 60 °C. Il permet d’évaluer la susceptibilité de l’enrobé au désenrobage ou au vieillissement accéléré.

Figure 4.1 Bain de trempage pour Tenue à l’eau

4.1.1.2 Essai à la presse à cisaillement giratoire (LC-004)
Mis au point surtout pour l’étude d’enrobés destinés à des projets particuliers ou d’envergure, l’essai à la presse à cisaillement giratoire (figure 4.2) se caractérise par l’étude en laboratoire de la compactibilité potentielle des enrobés en chantier. Des
courbes sont tracées à partir de la teneur en vides en fonction de l'énergie de compactage et elles permettent de calculer en laboratoire la compactabilité de l'enrobé et sa teneur en vides après compactage en chantier; lorsque l'étude est conçue à cette fin, les courbes peuvent même renseigner le concepteur sur la variation apportée par l'utilisation de divers constituants combinés dans différentes proportions. Cet essai est très utile aux concepteurs et responsables de la formulation en laboratoire, mais l'appareil coûte cher et l'interprétation des résultats demande des connaissances techniques particulières. Ces raisons font qu'on ne l'emploie pas pour le contrôle en général.

AFNOR (Association française de normalisation) NF P 98 212

Figure 4.2 Presse à cisaillement giratoire et configuration de l'éprouvette

4.1.1.3 L'essai à l'ornière

L'essai à l'ornière (figure 4.3) sert à l'étude des enrobés pour chaussées à trafic intense et très élevé. Il permet de déterminer la profondeur de l'ornière produite par le passage d'un pneu sur des plaques d'enrobé préparées en laboratoire. Des éprouvettes de grandes dimensions (18 cm x 15 cm x 5 ou 10 cm d'épaisseur) sont confectionnées en deux exemplaires dans des moules rectangulaires métalliques où l'enrobé est compressé à des
taux d'énergie différents. Par la suite on fait rouler un pneu lisse, sur les éprouvettes en de nombreux cycles. Les résultats font voir la variation de l'orniérage en fonction de la teneur en vides et des granulats utilisés (nature, dureté, angularité, etc.) et même en fonction du liant employé (type et teneur). Bien que cet essai soit facile à réaliser, le coût élevé de l'appareillage et l'espace qu'il requiert le limitent actuellement à l'étude et à la formulation en laboratoire par des organismes spécialement équipés à cette fin.

REMARQUE :
Ces essais dits de performance, sont complémentaires, mais on n'en fait parfois qu'un ou deux suivant l'importance des travaux et des contraintes prévues pour la chaussée. Le MTQ s'en sert souvent pour la formulation ou l'acceptation d'enrobés de béton bitumineux qui auront à supporter une forte circulation.

![Diagramme de l'orniérage](image)

AFNOR (Association Française de normalisation) NF P-98-253-1

Figure 4.3 Essai à l'orniérée

4.1.2 Méthode Marshall (NQ 2300-060)

La méthode Marshall est la plus connue et la plus utilisée en Amérique. Elle est normalisée par le BNQ et recommandée au Québec pour l'analyse et le contrôle des enrobés bitumineux classiques. Elle permet de mesurer en laboratoire la résistance d'une éprouvette à la déformation (une forme de la stabilité) sous l'application graduelle d'une charge, et la déformation subie par cette même éprouvette au moment de sa rupture sous l'application de la charge maximale (figure 4.4). Comme dans les autres méthodes d'analyse, l'éprouvette exige une préparation particulière. Elle consiste en une briquette circulaire de 105 mm de diamètre et de 62,5 mm de haut préparée par le compactage mécanique de l'enrobé à 150 °C (lorsque le liant est un bitume classique, dont la classe est comprise entre les PG 58-28 et 52-34).
4.1.2.1 Avantages de la méthode Marshall
La méthode Marshall est universellement connue, elle a été maintes fois éprouvée et a fait l'objet de nombreuses études au Québec. Les appareils sont disponibles rapidement partout au Québec, ils coûtent relativement peu, s'installent et s'utilisent facilement.

Même si la méthode Marshall peut servir pour des études en laboratoire et pour la formulation, on l'utilise surtout pour le contrôle en laboratoire, le contrôle en chantier, ou l'analyse d'éprouvettes préparées en laboratoire ou prélevées sur des chaussées neuves ou vieilles (carottes).

4.1.2.2 Désavantages de la méthode Marshall
Malheureusement, à part quelques améliorations suggérées par le ministère des Transports du Québec, aucune modification ou adaptation majeure n'a été apportée à la
dessus de l'enrobé un autre disque de papier puis la dame de compactage. Appliquer 60 coups de compactage, retourner l'éprouvette et appliquer 60 autres coups. Laisser refroidir sur le coté à la température ambiante et identifier. Ne démouler que lorsque l'éprouvette est à la température de la pièce (figure 4.6).

SIGNIFICATION PRATIQUE :
La température de compactage correspond à celle nécessaire au malaxage pour assurer une viscosité de 170 mm²/s et permettre en chantier le maximum de compactibilité. Les éprouvettes ainsi préparées servent à déterminer d'abord la densité brute de l'enrobé, puis sa stabilité, c'est à dire sa résistance à la déformation, et enfin cette déformation même.

Figure 4.6 Compacteur, moule et éprouvette Marshall
PROCÉDURE SOMMAIRE:
Faire tremper l'éprouvette de 30 à 40 minutes dans un bain à une température constante de 60 ± 1°C (figure 4.10). Régler le cadran de la presse Marshall à zéro et vérifier les tiges de guidage. Placer l'éprouvette, essuyée en surface, entre les mâchoires parfaitement propres, centrer et ajuster les mâchoires. Placer les indicateurs de déformation (déflectomètres) et les mettre à zéro. Mettre la presse en marche, l'arrêter au moment où la charge maximale est atteinte et noter cette charge (l'essai doit être réalisé dans les 30 secondes qui suivent la mise en marche de la presse). Finalement lire en millimètres les déformations obtenues.

SIGNIFICATION PRATIQUE:
Le résultat en kilonewton s'exprime sans unité, mais doit être corrigé selon un facteur relié au volume brut de l'éprouvette pour tenir compte de son épaisseur, si elle n'est pas de 62,5 mm. Ce résultat fournit une mesure empirique de la résistance à la déformation : la stabilité Marshall. Cette dernière permet de juger si l'enrobé est conforme ou non aux exigences portant sur cette caractéristique particulière. La moyenne des deux déformations obtenues donne un indice de la fluidité ou flexibilité de l'enrobé à 60 °C, température maximale que peut atteindre le revêtement.

Figure 4.10 Trempage dans un bain à température contrôlée

Exemple 4.4

<table>
<thead>
<tr>
<th>EXEMPLE DE CALCUL DE LA STABILITÉ (corrégé) ET DE LA DÉFORMATION MARSHALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Données : Charge maximale appliquée = 9 580 kn</td>
</tr>
<tr>
<td>Masse dans l'air de l'éprouvette (A) = 1 244 g</td>
</tr>
<tr>
<td>Masse dans l'eau de l'éprouvette (B) = 715 g</td>
</tr>
<tr>
<td>Déformations lues = 3,5 et 4,1 mm</td>
</tr>
</tbody>
</table>
Solution : Volume brut = Volume d'eau déplacé = A - B
= 1 244 - 715 = 529 cm³
Facteur de correction selon le Tableau 4.1 = 0,96
Stabilité corrigée = Stabilité x facteur de correction
= 9 580 x 0,96 = 9 197
Déformation (moy.) = (3,5 + 4,1) / 2 = 3,8 mm

<table>
<thead>
<tr>
<th>VOLUME BRUT EN cm³, DE L'ÉPROUVETTE COMPACTÉ</th>
<th>HAUTEUR APPROXIMATIVE EN mm</th>
<th>FACTEUR DE CORRECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>329-340</td>
<td>41,3</td>
<td>2,27</td>
</tr>
<tr>
<td>341-353</td>
<td>42,9</td>
<td>2,08</td>
</tr>
<tr>
<td>354-367</td>
<td>44,4</td>
<td>1,92</td>
</tr>
<tr>
<td>368-379</td>
<td>46,0</td>
<td>1,79</td>
</tr>
<tr>
<td>380-392</td>
<td>47,6</td>
<td>1,67</td>
</tr>
<tr>
<td>393-405</td>
<td>49,2</td>
<td>1,56</td>
</tr>
<tr>
<td>406-420</td>
<td>50,8</td>
<td>1,47</td>
</tr>
<tr>
<td>421-431</td>
<td>52,4</td>
<td>1,39</td>
</tr>
<tr>
<td>432-443</td>
<td>54,0</td>
<td>1,32</td>
</tr>
<tr>
<td>444-456</td>
<td>55,6</td>
<td>1,25</td>
</tr>
<tr>
<td>457-470</td>
<td>57,2</td>
<td>1,19</td>
</tr>
<tr>
<td>471-482</td>
<td>58,7</td>
<td>1,14</td>
</tr>
<tr>
<td>483-495</td>
<td>60,3</td>
<td>1,09</td>
</tr>
<tr>
<td>496-508</td>
<td>61,9</td>
<td>1,04</td>
</tr>
<tr>
<td>509-522</td>
<td>63,5</td>
<td>1,00</td>
</tr>
<tr>
<td>523-535</td>
<td>65,1</td>
<td>0,96</td>
</tr>
<tr>
<td>536-546</td>
<td>66,7</td>
<td>0,93</td>
</tr>
<tr>
<td>547-559</td>
<td>68,3</td>
<td>0,89</td>
</tr>
<tr>
<td>560-573</td>
<td>69,9</td>
<td>0,86</td>
</tr>
<tr>
<td>574-585</td>
<td>71,4</td>
<td>0,83</td>
</tr>
<tr>
<td>586-598</td>
<td>73,0</td>
<td>0,81</td>
</tr>
<tr>
<td>599-610</td>
<td>74,6</td>
<td>0,78</td>
</tr>
<tr>
<td>611-625</td>
<td>76,2</td>
<td>0,76</td>
</tr>
</tbody>
</table>

NORME NQ 2300-060

Tableau 4.1 Facteurs de correction pour la stabilité Marshall

4.2.6 Détermination de la teneur en bitume (NQ 2300-100)

BUT :
Déterminer par extraction (dissolution ou centrifugation) la teneur totale de bitume contenu dans l'enrobé.

PROCÉDURE SOMMAIRE :
Penser le plat de la centrifugeuse avec un filtre séché à 110°C. Verser dans le plat la prise d'essai préalablement portée à 110°C, ajouter le filtre et peser le tout. Laisser refroidir jusqu'à 60°C, placer dans la centrifugeuse, ajouter 250 ml de solvant (trichloréthylène), fixer le couvercle, puis laisser dissoudre l'enrobé pendant 10 minutes (Figure 4.11). Mettre la centrifugeuse en marche, augmenter graduellement la vitesse jusqu'à 2 200 ± 200 tours/minute. L'arrêter lorsque le liquide cesse de s'écouler du bec de sortie. Répéter l'opération encore trois fois, mais en réduisant le temps.
SIGNIFICATION PRATIQUE :
La masse en filler dans le produit de l'extraction doit être déduite de la masse en bitume obtenue par extraction, on doit ensuite l'ajouter à la masse des granulats obtenue lors de l'analyse granulométrique par tamisage des granulats secs issus de l'extraction.

Exemple 4.6

EXEMPLE DE CALCUL DE LA MASSE DU FILLER PERDUE A L'EXTRACTION

Données :
A - Masse du ballon + bouchon = 254,1
B - Masse du ballon + bouchon + eau à 25,5 °C = 1 289,2
D - Masse du ballon + bouchon + solvant à 20,7 °C = 1 771,4
G - Masse du bitume + filler, déterminée à l'extraction = 61,7
H - Masse du ballon + bitume + filler + solvant à 22,2 °C = 1 743,4
K - Masse volumique du filler en g/cm³ = 2,70
L - Masse volumique du bitume en g/cm³ = 1,02

SOLUTION :
C - Volume ballon = (A - B) * 1,00309 = 1 038,3 (voir tableau 4.2, pour 25,5 °C)
E - Masse volumique du solvant = [(D - A) / C] = 1,4614
F - Écart de la masse volumique suivant le tableau 4.3 = + 0,0036
J - Volume du bitume + filler = (C - I) = 59,8
M - Masse du filler = [G - (L / K - L)((K x J) - G)] = 1,2

![Image](image_url)

Figure 4.12 Récupération du filler minéral
FORMULATION DE L'ENROBÉ ET CENTRALES D'ENROBAGE

Nous avons vu que les bitumes et les granulats se répartissent en de nombreuses classes. En combinant tel ou tel bitume avec tel ou tel granulat, on peut donc obtenir une grande variété d'enrobés, et plus encore si l'on joue avec les proportions. Nous allons voir maintenant sur quels critères on se base pour décider de la composition d'un béton bitumineux et comment on établit la formule selon laquelle les constituants seront combinés. Nous donnerons ensuite un aperçu des installations industrielles où l'on fabrique les bétons bitumineux et que l'on nomme « centrales d'enrobage ».

5.1 CHOIX D'UN ENROBÉ
Quand on choisit un enrobé, on doit d'abord s'assurer de pouvoir se procurer les granulats qu'on désire en quantité suffisante. Cela dit, certains critères s'imposent.

5.1.1 Critères de base
La fonction de l'enrobé, son épaisseur prévue et les conditions particulières de son emploi dictent le choix.

5.1.1.1 Fonction
Le choix de l'enrobé dépend avant tout de la fonction qu'il remplira (couche de base, de liaison, de surface, de surface, surfaçage, réparation, etc.) car les proportions des constituants varient suivant le cas. (chapitre 1). Par exemple, au MTQ, pour une couche de roulement, on aura le choix entre un béton bitumineux de type EB-10S et un EB-14.

5.1.1.2 Épaisseur prévue
Lorsque pour une même fonction, on a le choix entre deux types d'enrobés, on doit tenir compte de l'épaisseur qu'aura le revêtement compacté. On sait que cette épaisseur ne peut dépasser de plus de 6 mm le double de la grosseur maximale du granulat; plus l'épaisseur sera forte, plus le pourcentage de gros granulats et la grosseur maximale pourront être élevés. C'est l'inverse du calcul de l'épaisseur minimale du revêtement compacté en fonction des granulats utilisés. Si on connaît le taux de pose en kg/m² et la densité maximale de l'enrobé, on peut calculer, à l'aide du tableau 5.1, l'épaisseur qu'aura le revêtement une fois compacté, et dès lors la grosseur maximale ou le type de béton bitumineux à utiliser.
EXEMPLE 5.1

Pour un enrobé de \(d_{\text{Mn}} = 2,45 \), si le taux de pose est de 85 kg/m\(^2\), on choisira le EB-14, tandis que pour un taux de 60 kg/m\(^2\), ce sera le EB-10S

<table>
<thead>
<tr>
<th>ÉPAISSEUR MINIMALE COMPACTÉE (mm)</th>
<th>= (GROSSEUR MAXIMALE x 2) + 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAUx DE POSE (TP) en Kg/m(^2)</td>
<td>= Emc x 0,935 x (d_{\text{Mn}}) x 0,997044</td>
</tr>
<tr>
<td>ÉPAISSEUR COMPACTÉE</td>
<td>= TP/ (0,935 x (d_{\text{Mn}}) x 0,997044)</td>
</tr>
<tr>
<td>GROSSEUR MAXIMALE DU GRANULAT</td>
<td>= (Emc-6) / 2</td>
</tr>
</tbody>
</table>

0,935 = compacité moyenne basée sur la densité moyenne de l’enrobé
0,997044 = masse volumique de l’eau en g/m\(^3\) à 25° C

Tableau 5.1 Épaisseur minimale compactée–taux de pose–grosseur maximale du granulat

5.1.1.3 Conditions diverses (mise en œuvre, trafic, etc.)

Enfin, le choix de l’enrobé pourra être influencé par certaines conditions reliées à la mise en place (avec finisseur ou avec niveleuse ?), au compactage (avec rouleau vibrant ou avec un rouleau tandem en acier ?), au trafic (intense et lourd ou léger ?), à l’importance des travaux (autoroute ou voie de service ?) et aux conditions climatiques.

5.1.2 Conditions particulières
Même s’ils ne sont pas reliés directement au choix de l’enrobé, d’autres facteurs doivent être pris en considération dans sa formulation.

5.1.2.1 Le meilleur enrobé
Le meilleur enrobé est évidemment celui qui donne le revêtement répondant le mieux à toutes les exigences. Celles-ci tiennent en grande partie, de près ou de loin, à la teneur en bitume, à la granulométrie du mélange de granulats et à la compacité de l’enrobé après la mise en œuvre. Le tableau 5.2 montre les relations entre ces facteurs et les propriétés recherchées d’un revêtement de béton bitumineux. Toutefois, on devra quelquefois accentuer certaines caractéristiques pour tenir compte de conditions particulières.

Tableau 5.2 Relation entre les facteurs et les propriétés recherchées
Formulation de l’enrobé et centrales d’enrobage 117

<table>
<thead>
<tr>
<th>PROPRIÉTÉS</th>
<th>FACTEURS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TENEUR EN BITUME</td>
</tr>
<tr>
<td>COHÉSION</td>
<td>Élevée</td>
</tr>
<tr>
<td>CONFORT</td>
<td>Élevée</td>
</tr>
<tr>
<td>SÉCURITÉ</td>
<td>Basse</td>
</tr>
<tr>
<td>MANIABILITÉ</td>
<td>Élevée</td>
</tr>
<tr>
<td>COMPACTIBILITÉ</td>
<td>Élevée</td>
</tr>
</tbody>
</table>

Tableau 5.2 (suite) Relation entre les facteurs et le propriétés recherchées

5.1.2.2 La grosseur maximale du gros granulat
La règle de base est que la grosseur maximale (Gm) ne doit pas dépasser la moitié de l'épaisseur moyenne de l'enrobé compacté. Considérant que cette dernière peut varier de 6 mm, on peut déterminer la grosseur maximale (et le type d'enrobé) par calcul (voir tableau 5.1).

\[
2Gm \text{ (granulat) = } (TP/ d_{bg}) - 6
\]

CALCUL DE LA GROSSEUR MAXIMALE DU GRANULAT

Données :
Taux de pose prévu = 75 kg/m²
Densité brute du revêtement = 2,350

Solution :
\[
2Gm = (75 /2,350) - 6 = 26
\]
Gm = 13 mm
Donc : le choix d'un EB-14 est tout indiqué

5.1.2.3 Quantité de gros granulats selon l'épaisseur
Plus l'épaisseur du revêtement est importante, plus la quantité de gros granulats devrait être élevée. Par conséquent la granulométrie de l'enrobé devrait se situer plus près de la limite inférieure du fuseau granulométrique.

5.1.2.4 Conditions spéciales
D'autres conditions peuvent affecter le choix définitif du type d'enrobé. Par exemple une couche de base mise en place à l'automne et destinée à n'être recouverte que l'année suivante, devra avoir une texture plus fermée, donc un granulométrie plus dense, qu'une couche de base conventionnelle. Signalons enfin que dans certains cas, comme avec les couches de correction, c'est avec l'épaisseur minimale qu'il faut composer.
REMARQUE :
La granulométrie corrigée pour chaque tamis est le pourcentage passant du calibre, multiplié par sa proportion en décimales dans le mélange, et cela pour chacun des tamis.

7. Calculer le combiné granulométrique (granulométrie résultant du mélange de granulats).

REMARQUE :
Le combiné granulométrique s'obtient en faisant la somme pour chaque tamis des pourcentages passant corrigés. Il doit satisfaire aux exigences; sinon il faut corriger le pourcentage du calibre de granulat qui agit sur les tamis défectueux; soit expérimentalement ou soit par la méthode par approximations successives (paragraphe 5.2.1.2).

<table>
<thead>
<tr>
<th>SPÉCIFICATIONS</th>
<th>TAMIS mm</th>
<th>28</th>
<th>20</th>
<th>14</th>
<th>10</th>
<th>5</th>
<th>2,5</th>
<th>1,25</th>
<th>630 um</th>
<th>315 um</th>
<th>160 um</th>
<th>80 um</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 LIMITE SUPÉRIEURE</td>
<td>100</td>
<td>100</td>
<td>92</td>
<td>82</td>
<td>60</td>
<td>50</td>
<td>42</td>
<td>35</td>
<td>26</td>
<td>17</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>2 LIMITE INFÉRIEURE</td>
<td>100</td>
<td>100</td>
<td>80</td>
<td>65</td>
<td>45</td>
<td>35</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3 GRANULOMÉTRIE VISÉE</td>
<td>100</td>
<td>100</td>
<td>90</td>
<td>75</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>25</td>
<td>18</td>
<td>10</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4 GROS GRANULATS (G)</td>
<td>100</td>
<td>100</td>
<td>89</td>
<td>71</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>correction sur 10 mm</td>
<td></td>
</tr>
<tr>
<td>5 G1</td>
<td>14 mm</td>
<td>100</td>
<td>99</td>
<td>79</td>
<td>42</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 G2</td>
<td>10 mm</td>
<td>100</td>
<td>100</td>
<td>98</td>
<td>59</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 G3</td>
<td>5 mm</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>96</td>
<td>21</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 G4</td>
<td></td>
</tr>
<tr>
<td>9 GRANULATS FINS (F)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% F = 50% (100-50)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F2 = 10/27=37%, F1=13%</td>
<td></td>
</tr>
<tr>
<td>10 F1</td>
<td>sable</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>98</td>
<td>96</td>
<td>93</td>
<td>88</td>
<td>78</td>
<td>53</td>
<td>26</td>
<td>10,5</td>
</tr>
<tr>
<td>11 F2</td>
<td>éboulis</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>96</td>
<td>69</td>
<td>48</td>
<td>35</td>
<td>20</td>
<td>8</td>
<td>2,3</td>
</tr>
<tr>
<td>12 F3</td>
<td></td>
</tr>
<tr>
<td>13 GRANULATS TRÈS FINS (TF)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TF</td>
<td>FILLER</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>98</td>
<td>80,0</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G calib</td>
<td>% dens.</td>
<td>abs,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>G1</td>
<td>40</td>
<td>2,71</td>
<td>0,8</td>
<td>40</td>
<td>40</td>
<td>32</td>
<td>17</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>G2</td>
<td>10</td>
<td>2,65</td>
<td>1,0</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>G3</td>
<td>0</td>
<td>2,72</td>
<td>0,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>G4</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>F1</td>
<td>10</td>
<td>2,65</td>
<td>1,0</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>20</td>
<td>F2</td>
<td>37</td>
<td>2,75</td>
<td>0,5</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>35</td>
<td>25</td>
<td>18</td>
<td>13</td>
</tr>
<tr>
<td>21</td>
<td>F3</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>TF</td>
<td>3</td>
<td>2,70</td>
<td>0,8</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>23</td>
<td>COMBINÉ GRANULOMÉTRIQUE</td>
<td>100</td>
<td>100</td>
<td>92</td>
<td>73</td>
<td>49</td>
<td>38</td>
<td>30</td>
<td>24</td>
<td>16</td>
<td>9</td>
<td>4,2</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Tableau 5,3 Données et résultats de calculs d’un mélange de granulats froids (méthode expérimentale)
Exemple 5.5

CALCUL PAR LA MÉTHODE EXPÉRIMENTALE
(MÉLANGE DE GRANULATS FROIDS)

Données :
Voir au tableau 5.3

Solution :
1. % passant visé au tamis de 5 mm = 50 % (ligne 3)
 donc F = 50 % et G = 50 %
2. Gx = G1 et le tamis clé est le tamis de 14 mm (ligne 5)
 % G1 = 100 (100 - 90 / 99 - 79) = 50 %
3. % G2 + % G3 = % G (50) - % Gx ou G1 (50) = 0
4. écart au tamis de 10 mm = 4 %
 calibre correcteur = G2
 % G2 = 100 (4/98 - 59) = 10 % (fin ligne 8)
 alors G1 = 50 - 10 = 40 %
5. Fx = F2 et le tamis clé est le tamis de 2,5 mm (ligne 11)
 % F2 = 100 (50 - 40 / 96 - 69) = 37 % (début ligne 12)
 % F1 = % F - % F2 = 50 - 37 = 13 %
 écart de 1,9 % au tamis de 80 μm (vs 4 % visi)
 calibre correcteur = TF (filler)
 % filler = 100 (1,9/80) = 3 %
 alors F1 = 13 - 3 = 10 %
6. G1 = 0,40, G2 = 0,1, F1 = 0,10, F2 = 0,37, TF = 0,03
 Granulométries corrigées par calibre = lignes 15 à 20
7. Voir la ligne 22 au tableau 5.3

b) Procédure pour combiner les granulats chauds

Cas I :
On ne dispose pas du combiné granulométrique des granulats froids.
On procède alors comme pour le mélange de granulats froids.

Cas II :
On dispose du combiné granulométrique des granulats froids.
On procède alors ainsi :
1. On trace la courbe granulométrique du combiné granulométrique obtenu par la
 combinaison des granulats froids.
2. On élève des perpendiculaires de la base du graphique, en partant de chacune des
 ouvertures correspondant à celles des cribles utilisés pour séparer en centrale les granulats
 chauds.
3. Des points de rencontre des perpendiculaires avec la courbe granulométrique, on mène des
 parallèles à la base jusqu'à l'échelle graduée en pourcentages.
4. On note, comme pourcentage à utiliser de chaque calibre, la différence entre les parallèles
 (figure 5.3).
<table>
<thead>
<tr>
<th>SPÉCIFICATIONS</th>
<th>TAMIS mm</th>
<th>28</th>
<th>20</th>
<th>14</th>
<th>10</th>
<th>5</th>
<th>2,5</th>
<th>1,25</th>
<th>630 um</th>
<th>315 um</th>
<th>160 um</th>
<th>80 um</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 LIMITE SUPÉRIEURE</td>
<td>100</td>
<td>100</td>
<td>92</td>
<td>82</td>
<td>60</td>
<td>50</td>
<td>42</td>
<td>35</td>
<td>26</td>
<td>17</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>2 LIMITE INFÉRIEURE</td>
<td>100</td>
<td>100</td>
<td>80</td>
<td>65</td>
<td>45</td>
<td>35</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3 GRANULOMÉTRIE VISÉE</td>
<td>100</td>
<td>100</td>
<td>90</td>
<td>75</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>25</td>
<td>18</td>
<td>10</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4 GROS GRANULATS (G)</td>
<td>100</td>
<td>100</td>
<td>93</td>
<td>74</td>
<td>51</td>
<td>%G = 50%, G1 = 25%, G2 = 20%, G3 = 5% +G1 = 3/89 = 5% G2 = 20-5 = 15%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 G1</td>
<td>100</td>
<td>95</td>
<td>9</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 G2</td>
<td>100</td>
<td>100</td>
<td>86</td>
<td>6</td>
<td>2</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 G3</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>92</td>
<td>5</td>
<td>2</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 G4</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>92</td>
<td>5</td>
<td>2</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 GRANULATS FINS (F)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>96</td>
<td>79</td>
<td>58</td>
<td>45</td>
<td>27</td>
<td>12</td>
<td>6</td>
<td>1,8</td>
</tr>
<tr>
<td>10 F1</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>96</td>
<td>79</td>
<td>58</td>
<td>45</td>
<td>27</td>
<td>12</td>
<td>6</td>
<td>1,8</td>
</tr>
<tr>
<td>11 F2</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>96</td>
<td>79</td>
<td>58</td>
<td>45</td>
<td>27</td>
<td>12</td>
<td>6</td>
<td>1,8</td>
</tr>
<tr>
<td>12 F3</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>96</td>
<td>79</td>
<td>58</td>
<td>45</td>
<td>27</td>
<td>12</td>
<td>6</td>
<td>1,8</td>
</tr>
<tr>
<td>13 GRANULATS TRÈS FINS (TF)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>98</td>
<td>80,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 TF FILLER</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>98</td>
<td>80,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 G R</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>98</td>
<td>80,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>98</td>
<td>80,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>98</td>
<td>80,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>98</td>
<td>80,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>98</td>
<td>80,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>98</td>
<td>80,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>98</td>
<td>80,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>98</td>
<td>80,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>98</td>
<td>80,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>98</td>
<td>80,0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 5.4 Données et résultats de calculs d’un mélange de granulats chauds en centrale classique (méthode expérimentale)

5.2.2 Détermination de la teneur théorique en bitume

Pour un mélange de granulats d’une granulométrie donnée, il est possible de calculer approximativement la teneur nécessaire en bitume. Cette teneur théorique est fonction de la granulométrie du mélange de granulats, plus précisément du total des surfaces de toutes les particules à enrober.

5.2.2.1 Les diverses formules

Il existe plusieurs formules pour déterminer cette teneur théorique, soit en pourcentage de l’enrobé ou en pourcentage des granulats. Toutes ont comme base des facteurs qui multiplient soit les pourcentages passants, soit les pourcentages cumulatifs retenus, ou soit les pourcentages séparés retenus sur certains tamis. Ces facteurs, le mode d’expression de la granulométrie et les tamis retenus dépendent de la formule utilisée. Parmi les plus connues, il y a les formules Barber Greene, Asphalt Institute, McKesson & Frickstad, Pope, et Nebraska. Toutefois au Québec, c’est la méthode LERO qu’on emploie, et plus particulièrement, la LERO simplifiée. Cette formule ne fait appel qu’à un seul facteur ou nombre à mémoriser, soit : 120
5.2.3 Détermination de la teneur idéale en bitume (Marshall)
Avec la méthode Marshall, on se base sur les résultats d'analyse et de calculs de caractéristiques prédéterminées pour déterminer la teneur idéale en bitume. Le procédé se résume comme suit.

On prépare des mélanges identiques de granulats dans les proportions nécessaires pour satisfaire aux exigences granulométriques de l'enrobé. (voir 5.2.1.) On enrobe ces mélanges de granulats avec des quantités différentes de bitume. On analyse ensuite les enrobés produits et on retient la teneur en bitume donnant les meilleurs résultats.

5.2.3.1 Procédure
a) Nombre d'éprouvettes
Le minimum requis est de neuf, soit trois éprouvettes pour chacun des trois groupes à teneur en bitume différente. Mais souvent on en exige quinze, soit cinq groupes de trois.

b) Teneurs en bitume
La teneur en bitume doit varier de 0,5 % entre chaque groupe de trois éprouvettes. Il est fortement recommandé de donner au groupe médian la teneur théorique déterminée mathématiquement (formule Lero), surtout si le nombre d'éprouvettes est de neuf. On augmente cette teneur de 0,5 % pour trois éprouvettes et on la diminue d'autant pour les trois dernières. On procède de même lorsque l'on a quinze éprouvettes, ajoutant et retirant 0,5 % aux deux groupes supplémentaires.

c) Quantité d'enrobé
Avec des granulats de densité brute comprise entre 2,500 et 2,800, on produit environ 1 200 grammes d'enrobé, soit la quantité nécessaire pour donner, une fois compactées, des briquettes de 62,5 mm d'épaisseur.

d) Préparation des éprouvettes
1. Vérifier si les matériaux disponibles (divers calibres de granulats et bitume) sont ceux prévus et sont en quantités suffisantes pour le nombre d'éprouvettes requis, puis s'assurer que tout l'équipement nécessaire est en place (voir NQ 2300-020).
2. Faire sécher les granulats à 110°C, jusqu'à masse constante, et chauffer le bitume à la température lui assurant une viscosité Brookfield ≤ 3 Pa/s. (135 ° à 155°C pour les bitumes routiers).
3. Peser cumulativement dans un même récipient les quantités requises de chacun des calibres de granulats pour répondre aux pourcentages établis en 5.2.1 et suffisantes pour fournir 1 200 g d'enrobé. Peser dans des récipients différents le même mélange de granulats pour autant d'éprouvettes que prévu.
4. Faire chauffer ces mélanges de granulats dans un four, à une température comprise entre 150 ° et 180°C, mais sans jamais dépasser de 30°C la température prévue pour le bitume.
5. Dans un bol à malaxage ayant déjà servi (sale), sinon y malaxer auparavant un enrobé à titre expérimental, vider le plat de granulats chauds qu'on vient de
préparer, bien mélanger les particules entre elles, les tasser sur les bords de manière à former un petit cratère au centre et y verser la quantité de bitume prévue.
6. Malaxer aussitôt jusqu'à enrobage complet et homogène. Puis après s'être assuré que la température de l'enrobé n'est pas inférieure de plus de 10°C à celle observée durant le malaxage, amorcer immédiatement le compactage selon la procédure NQ 2300-020; sinon remettre au four.
7. Identifier la briquette, la laisser refroidir douze heures à la température ambiante et démouler.

REMARQUE:
Reprendre les étapes e, f, et g pour chacune des éprouvettes.

5.2.3.2 Essais et détermination des caractéristiques requises pour chaque briquette
a) Déterminer :
 - la densité brute, selon NQ 2300-040;
 - la densité maximale, selon NQ 2300-045;
 - la stabilité et déformation Marshall, selon NQ 2300-060.

REMARQUE :
On ne doit conserver que les résultats qui sont à l'intérieur des limites de répétabilité prévues pour chacune de ces procédures normalisées d'essai.

b) Calculer :
 - le pourcentage des vides;
 - le pourcentage de VAM comblé par le bitume;
 - le pourcentage de VRB;
 - la masse volumique;
 - l'épaisseur du feuillet de bitume.

c) Réaliser l'essai d'extraction selon NQ 2300-100, et déterminer les facteurs de correction pour la perte en filtre et le bitume retenu par les granulats selon NQ 2300-110 et 150.

5.2.3.3 Mise en graphique des résultats
a) Déterminer pour chaque groupe de briquettes, avec la même teneur en bitume, la moyenne des résultats retenus pour :
 - le pourcentage des vides;
 - le pourcentage de VAM comblé par le bitume;
 - le pourcentage de VRB;
 - la masse volumique de l'enrobé compacté;
 - la stabilité Marshall;
 - la déformation Marshall;
- l'épaisseur du feuille de bitume;
- la densité maximale.

b) Échelonner sur la base de chaque graphique (figure 5.4) les teneurs en bitume et, sur le côté, les valeurs moyennes obtenues et les exigences à respecter (tableau 5.5).
c) Pointer les valeurs obtenues pour chaque teneur en bitume et tracer la courbe réunissant ces points (tableau 5.5).
d) Pour chaque caractéristique, noter la teneur en bitume fournissant le meilleur résultat ou la valeur recherchée pour répondre à quelques exigences particulières (climat, région, etc.).

Figure 5.4 Graphiques pour le calcul de la teneur idéale en bitume
5.2.3.4 Calcul de la teneur idéale

Pour connaître la teneur idéale, on fait la moyenne des teneurs en bitume qui ont donné la stabilité maximale, la masse volumique maximale et la teneur en vides désirée. On doit cependant vérifier sur les autres graphiques si elle permet de satisfaire aux exigences. Le tableau 5.5 fournit un exemple détaillé des calculs nécessaires.

Tableau 5.5 Exemple de calcul de la teneur idéale en bitume
Tableau 5.6 Exemple de présentation d'une formule d'enduit

BÉTON BITUMINEUX
FORMULE DE MÉLANGE

Numéro de l'usine: XX
Nom de l'usine: Les Entreprises de Pavages Inc.
Localisation de l'usine: Québec

No de formule: 2000-01
Mélange: EB-14

--- GRANULOMÉTRIE À FROID ---

<table>
<thead>
<tr>
<th>Ident. Calibre</th>
<th>20</th>
<th>20</th>
<th>14</th>
<th>10</th>
<th>5</th>
<th>2.5</th>
<th>1.25</th>
<th>630</th>
<th>315</th>
<th>160</th>
<th>80</th>
<th>% des granulats</th>
</tr>
</thead>
<tbody>
<tr>
<td>P 14-20mm</td>
<td>100</td>
<td>97</td>
<td>20</td>
<td>3</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.7</td>
<td>0</td>
</tr>
<tr>
<td>P 10-14mm</td>
<td>100</td>
<td>100</td>
<td>85</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.8</td>
<td>21</td>
</tr>
<tr>
<td>P 5-10mm</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>85</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.5</td>
<td>21</td>
</tr>
<tr>
<td>C Criblure</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>95</td>
<td>66</td>
<td>46</td>
<td>33</td>
<td>22</td>
<td>15</td>
<td>9.8</td>
<td>29</td>
</tr>
<tr>
<td>S Banc de sable</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>93</td>
<td>81</td>
<td>69</td>
<td>55</td>
<td>28</td>
<td>12</td>
<td>7.3</td>
<td>29</td>
</tr>
</tbody>
</table>

Combiné

<table>
<thead>
<tr>
<th>% Passant</th>
<th>14.97</th>
<th>75.56</th>
<th>35.43</th>
<th>26.85</th>
<th>15.26</th>
<th>8.52</th>
<th>100.0</th>
</tr>
</thead>
</table>

Exigence minimum

<table>
<thead>
<tr>
<th>% Passant</th>
<th>14.97</th>
<th>75.56</th>
<th>35.43</th>
<th>26.85</th>
<th>15.26</th>
<th>8.52</th>
<th>100.0</th>
</tr>
</thead>
</table>

Formule

<table>
<thead>
<tr>
<th>% Passant</th>
<th>14.97</th>
<th>75.56</th>
<th>35.43</th>
<th>26.85</th>
<th>15.26</th>
<th>8.52</th>
<th>100.0</th>
</tr>
</thead>
</table>

--- CHARACTÉRISTIQUES PHYSIQUES ---

% bitume	5.10	≥ 4.7
% vides	3.4	2.0 - 5.0
VAM complét	74.6	≤ 950.0
Stabilité	10728	2.0 - 4.0
Déformation	3.4	2.0 - 4.0

Exigence minimum pour le film de bitume

A) 9.0 - 0.005 * T.G. = 6.68
B) 9.5 - 0.480 * SST = 6.71
C) 8.8 - 0.18 * VAM = 6.36

--- AUTRES CHARACTÉRISTIQUES PHYSIQUES ---

Total granulométrique	465
Surface spécifique totale	5.72
Film de bitume effectif	7.83
VAM effectif	13.6
Densité brute	2.379
Densité maximale	2.464
Compacité anticipée	0.74
Type de bitume	PG 58-28
Pénétration	0.20

REMARMQUE:

Note: Les résultats des essais ne se rapportent qu'aux échantillons analysés.
REMARQUE :
Les centrales récentes sont équipées d'ordinateurs contrôlant et automatisant pratiquement presque toutes les opérations. Aux modèles plus anciens, on peut facilement intégrer un tel système informatisé, mais pour cela, il faut une connaissance approfondie de toutes les opérations.

EXERCICES 5
E 5.1 Nommez trois critères sur lesquels on se base pour choisir un type précis d'enrobé bitumineux.
E 5.2 Comment calcule-t-on l'épaisseur minimale que doit avoir le revêtement bitumineux compacté ?
E 5.3 Calculez la grosseur maximale du granulat à utiliser dans un enrobé de béton bitumineux de 2,42 de densité maximale et qui sera mis en place au taux de 75 kg/m².
E 5.4 Nommez les caractéristiques ou propriétés d'un enrobé qui peuvent être influencées par la granulométrie, par la teneur en bitume, par la compacité du revêtement compacté.
E 5.5 Nommez trois méthodes permettant de calculer les proportions de chacun des calibres de granulats à combiner pour répondre aux exigences granulométriques d'un type de béton bitumineux donné.
E 5.6 Selon les données fournies au tableau 5.7, déterminez les pourcentages nécessaires de chacun des calibres de granulats pour fournir un béton bitumineux de type EB-14.
E 5.7 Selon la granulométrie résultant du mélange de granulats combinés en E 5.6, déterminez la teneur théorique en bitume nécessaire en pourcentage de l'enrobé, en pourcentage des granulats.
E 5.8 À l'origine, à quoi servait la formule Lero ?
E 5.9 Pour déterminer la teneur idéale en bitume selon la méthode Marshall, quelle est la quantité minimale d'éprouvettes à préparer ? combien de teneurs différentes en bitume doivent être utilisées ?
E 5.10 Sur quels essais et calculs se base-t-on pour calculer la teneur idéale en bitume selon la méthode Marshall ? Quels autres critères doivent être pris en considération ?
E 5.11 En vous servant des graphiques de la figure 5.4 et des données du tableau 5.8, calculez la teneur idéale en bitume à partir des résultats obtenus.
E 5.12 Par quelles étapes doit passer la formule de laboratoire de l'enrobé avant d'être acceptée officiellement ?
E 5.13 Dans la formule de chantier en quoi sont transformés les pourcentages de la formule de laboratoire ?
E 5.14 Nommez les trois modes de production de centrale d'enrobage pour béton bitumineux et décrivez-les brièvement.
<table>
<thead>
<tr>
<th>SPÉCIFICATIONS</th>
<th>TAMIS mm</th>
<th>28</th>
<th>20</th>
<th>14</th>
<th>10</th>
<th>5</th>
<th>2,5</th>
<th>1,25</th>
<th>630 um</th>
<th>315 um</th>
<th>160 um</th>
<th>80 um</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LIMITE SUPÉRIÈRE</td>
<td>100</td>
<td>100</td>
<td>92</td>
<td>82</td>
<td>60</td>
<td>50</td>
<td>42</td>
<td>35</td>
<td>26</td>
<td>17</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>LIMITE INFÉRIÈRE</td>
<td>100</td>
<td>98</td>
<td>80</td>
<td>65</td>
<td>45</td>
<td>35</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>GRANULOMÉTRIE VISÉE</td>
<td>100</td>
<td>100</td>
<td>90</td>
<td>75</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>25</td>
<td>18</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>GROS GRANULATS (G)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>G1</td>
<td>20-14 mm</td>
<td>100</td>
<td>91</td>
<td>41</td>
<td>12</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>G2</td>
<td>14-2,5mm</td>
<td>100</td>
<td>100</td>
<td>99</td>
<td>69</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>G3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>G4</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>GRANULATS FINS (F)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>F1</td>
<td>CRIBLURE</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>79</td>
<td>46</td>
<td>28</td>
<td>19</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>F2</td>
<td>SABLE</td>
<td>100</td>
<td>100</td>
<td>98</td>
<td>96</td>
<td>91</td>
<td>85</td>
<td>81</td>
<td>72</td>
<td>33</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>F3</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>GRANULATS TRÈS FINS (TF)</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>TF</td>
<td>FILLER</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>90</td>
<td>80</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G</th>
<th>calib</th>
<th>%</th>
<th>dens.</th>
<th>abs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>G1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>G2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>G3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>G4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>F1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>F2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>F3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>TF</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 23 | COMBINÉ GRANULOMÉTRIQUE | | | |

| 24 | TG | | | |

Tableau 5.7 Données pour la formulation d'un mélange de granulats (pour béton bitumineux de type MB-16).

<table>
<thead>
<tr>
<th>SÉRIES DE BRIQUETTES</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>% bitume</td>
<td>3,7</td>
<td>4,2</td>
<td>4,7</td>
<td>5,2</td>
<td>5,7</td>
</tr>
<tr>
<td>% voids dans l'eurolé</td>
<td>6,5</td>
<td>5,3</td>
<td>3,8</td>
<td>2,6</td>
<td>1,8</td>
</tr>
<tr>
<td>% YAM</td>
<td>15,0</td>
<td>14,6</td>
<td>14,4</td>
<td>14,4</td>
<td>14,6</td>
</tr>
<tr>
<td>% VRB</td>
<td>56,6</td>
<td>63,7</td>
<td>73,6</td>
<td>81,9</td>
<td>87,7</td>
</tr>
<tr>
<td>Masse volumique (kg/m³)</td>
<td>2 395</td>
<td>2 412</td>
<td>2 431</td>
<td>2 445</td>
<td>2 453</td>
</tr>
<tr>
<td>Stabilité Marshall (N)</td>
<td>9 530</td>
<td>10 680</td>
<td>11 700</td>
<td>12 650</td>
<td>12 900</td>
</tr>
<tr>
<td>Déformation Marshall (mm)</td>
<td>1,7</td>
<td>2,3</td>
<td>2,8</td>
<td>3,2</td>
<td>3,6</td>
</tr>
<tr>
<td>Feuille de bitume (microns)</td>
<td>6,09</td>
<td>6,79</td>
<td>7,70</td>
<td>8,53</td>
<td>9,27</td>
</tr>
<tr>
<td>Densité maximale</td>
<td>2 568</td>
<td>2 555</td>
<td>2 535</td>
<td>2 518</td>
<td>2 505</td>
</tr>
</tbody>
</table>

Tableau 5.8 Données pour le calcul de la teneur idéale en bitume.
- Mettre le système en marche pour une durée permettant de remplir aux trois quarts le récipient de cueillette. Lire le temps écoulé ou le nombre de révolutions qui ont été nécessaires.
- Pesez la masse de granulats recueillis et l'exprimer selon l'unité de temps choisie.
- Sur un graphique, avec pour abscisse la hauteur de la porte coulissante, l'intensité des vibrations ou la vitesse de la courroie d'alimentation, et pour ordonnée la masse de granulats, pointer pour chaque trémie la masse débitée par unité de temps et corrigée selon l'humidité superficielle moyenne.
- Répéter au minimum pour 50% puis 75% de la capacité du dispositif de dosage en place, et de préférence pour deux autres points intermédiaires.
- Tracer pour chaque trémie la courbe réunissant tous les points.

REMARQUE
Le récipient de cueillette peut même être un camion.

6.3.4 Graphique de calibrage
Le graphique que donnent les diverses mesures prises ci-dessus se nomme «graphique de calibrage» (figure 6.8a). Ce graphique nous dit comment régler chaque dispositif de dosage pour obtenir telle masse de tel calibre de granulats exigée par la formule établie (figure 6.8b).

6.3.5 Exemple de calibrage à froid
Les tableaux 6.1 et 6.2 illustrent un exemple de calibrage à froid des trémies en fonction de la hauteur de l'ouverture des portes. Si on y remplaçait la hauteur des ouvertures par le degré d'amplitude des vibrations ou la vitesse des courroies d'alimentation, le même exemple pourrait être utilisé pour illustrer respectivement l'appareil de vibrations magnétiques et celui employant la courroie d'alimentation.

<table>
<thead>
<tr>
<th>HAUTEUR PORTES cm</th>
<th>TRÉMIE NUMÉRO</th>
<th>MASSE TOTALE kg</th>
<th>MASSE DU RÉCIPENT kg</th>
<th>MASSE NETTE kg</th>
<th>NOMBRE DE RÉVOLUTIONS /min</th>
<th>MASSE PAR RÉVOLUTIONS kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>76,6</td>
<td>15,1</td>
<td>61,5</td>
<td>3,4</td>
<td>18,1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>55,4</td>
<td>14,9</td>
<td>40,5</td>
<td></td>
<td>11,9</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>49,8</td>
<td>14,8</td>
<td>35,0</td>
<td></td>
<td>10,3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>48,5</td>
<td>14,8</td>
<td>33,7</td>
<td></td>
<td>9,9</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>42,3</td>
<td>15,1</td>
<td>27,2</td>
<td></td>
<td>8,0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>148,9</td>
<td>15,1</td>
<td>133,8</td>
<td>2,8</td>
<td>47,8</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>124,4</td>
<td>14,9</td>
<td>109,5</td>
<td></td>
<td>39,1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>115,3</td>
<td>14,8</td>
<td>100,5</td>
<td></td>
<td>35,9</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>99,1</td>
<td>14,8</td>
<td>84,3</td>
<td></td>
<td>30,1</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>89,0</td>
<td>15,1</td>
<td>73,9</td>
<td></td>
<td>26,4</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>186,3</td>
<td>15,1</td>
<td>171,2</td>
<td>2,2</td>
<td>77,8</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>155,7</td>
<td>14,9</td>
<td>140,8</td>
<td></td>
<td>64,0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>138,4</td>
<td>14,8</td>
<td>123,6</td>
<td></td>
<td>56,2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>120,6</td>
<td>14,8</td>
<td>105,8</td>
<td></td>
<td>48,1</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>110,1</td>
<td>15,1</td>
<td>95,0</td>
<td></td>
<td>43,3</td>
</tr>
</tbody>
</table>

Tableau 6.1 Données pour le calibrage des trémies froides (suivant la hauteur des portes)
(Vitesse des courroies d'alimentation : 20 révolutions/min)
<table>
<thead>
<tr>
<th>HAUTEUR PORTES cm</th>
<th>TRÉMIE NUMÉRO</th>
<th>MASSE TOTALE kg</th>
<th>MASSE DU RÉCIPIENT kg</th>
<th>MASSE NETTE kg</th>
<th>NOMBRE DE RÉVOLUTIONS /min</th>
<th>MASSE PAR RÉVOLUTIONS kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>1</td>
<td>193,9</td>
<td>15,1</td>
<td>178,8</td>
<td>1.7</td>
<td>105,2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>178,6</td>
<td>14,9</td>
<td>163,7</td>
<td></td>
<td>96,3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>143,0</td>
<td>14,8</td>
<td>128,2</td>
<td></td>
<td>75,4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>126,8</td>
<td>14,8</td>
<td>112,0</td>
<td></td>
<td>65,9</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>112,7</td>
<td>15,1</td>
<td>97,6</td>
<td></td>
<td>57,4</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>154,6</td>
<td>15,1</td>
<td>139,5</td>
<td>1.4</td>
<td>126,8</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>129,4</td>
<td>14,9</td>
<td>114,5</td>
<td></td>
<td>104,1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>118,1</td>
<td>14,8</td>
<td>103,3</td>
<td></td>
<td>93,9</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>105,7</td>
<td>15,1</td>
<td>90,9</td>
<td></td>
<td>82,6</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>91,9</td>
<td>14,8</td>
<td>76,8</td>
<td></td>
<td>69,8</td>
</tr>
</tbody>
</table>

Tableau 6.1 (suite) Données pour le calibrage des trémies froides (suivant la hauteur des portes) (Vitesse des courroies d'alimentation : 20 révolutions/min)

DONNÉES ET CALCULS POUR LE DOSAGE À FROID SELON L'OUVERTURE DES PORTES

DONNÉES
- Capacité de la centrale = 250 tonnes/heure ou 4,1 t/min
- Vitesse des courroies d'alimentation = 20 révolutions / minute
- Débit des trémies selon l'ouverture = voir tableau 6.1
- Quantité formulée:
 - granulat 1 = 40% (des granulats)
 - granulat 2 = 5% (des granulats)
 - granulat 3 = 5% (des granulats)
 - granulat 4 = 20% (des granulats)
 - granulat 5 = 28% (des granulats)
 - filler minéral = 2% (des granulats)
 - bitume routier = 5,6% (de l'enrobé)

DEMANDÉ
1. La masse totale de granulats nécessaire par révolution
2. La masse nécessaire de chaque calibre
3. La hauteur à laquelle ajuster les portes des trémies

SOLUTION
1. Masse totale = 250 × 1000 × (100 - 5,60) / 60 / 20 = 196,6 kg/rév
2. Masse du granulat 1 = 196,6 × 0,40 = 78,65 kg/rév
 Masse du granulat 2 = 196,6 × 0,05 = 9,83 kg/rév
 Masse du granulat 3 = 196,6 × 0,05 = 9,83 kg/rév
 Masse du granulat 4 = 196,6 × 0,20 = 39,33 kg/rév
 Masse du granulat 5 = 196,6 × 0,28 = 55,05 kg/rév
 Masse du filler = 196,6 × 0,02 = 3,93 kg/rév
 Masse du bitume = 250 × 1000 × (0,056) / 60 / 20 = 11,66 kg/rév
3. Suivant la figure 6.8b
 Trémie 1 = 12,5 cm
 Trémie 2 = 4,0 cm
 Trémie 3 = 3,8 cm
 Trémie 4 = 10,0 cm
 Trémie 5 = 14,5 cm

Tableau 6.2 Exemple de calculs de dosage des granulats à froid
Exemple 6.1

<table>
<thead>
<tr>
<th>DOSAGE POUR DES FOURNÉES DE 4 000 KILOS DE GRANULATS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Données:</td>
</tr>
<tr>
<td>Pour obtenir dans le mélange de granulats</td>
</tr>
<tr>
<td>-10 % de pierre 20-14 mm (fourni par la trémie 1)</td>
</tr>
<tr>
<td>-15 % de pierre 14-10 mm (" " " 2)</td>
</tr>
<tr>
<td>-25 % de pierre 10-5 mm (" " " 3)</td>
</tr>
<tr>
<td>-47 % de sable-cribure (" " " 4)</td>
</tr>
<tr>
<td>-3 % de filler minéral (fourni par le silo de filler)</td>
</tr>
<tr>
<td>Solution:</td>
</tr>
<tr>
<td>On doit peser</td>
</tr>
<tr>
<td>- 4 000 x (0,10) soit 400 kilos de la trémie 1</td>
</tr>
<tr>
<td>- 4 000 x (0,10+0,15) soit 1 000 kilos des trémites 1+2</td>
</tr>
<tr>
<td>- 4 000 x (0,10+0,15+0,25) soit 2 000 kilos des trémites 1+2+3</td>
</tr>
<tr>
<td>- 4 000 x (0,10+0,15+0,25+0,47)</td>
</tr>
<tr>
<td>soit 3 880 kilos des trémites 1+2+3+4</td>
</tr>
<tr>
<td>- 4 000 x (1,00) soit 4 000 kilos des trémites 1+2+3+4+filler minéral</td>
</tr>
</tbody>
</table>

REMARQUE:
Le pourcentage de bitume prévu (5,6 %) devra d'abord être exprimé en pourcentage des granulats (5,9 %) avant d'être transformé en kilogrammes (236) ou en litres. (voir chapitre 4, section 4.3.9)

Exemple 6.2

<table>
<thead>
<tr>
<th>DOSAGE POUR DES FOURNÉES DE 4 000 KILOS D'ENROBÉS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Données:</td>
</tr>
<tr>
<td>Pour obtenir dans le mélange de granulats</td>
</tr>
<tr>
<td>-10 % de pierre 20-14 mm (fourni par la trémie 1)</td>
</tr>
<tr>
<td>-15 % de pierre 14-10 mm (" " " 2)</td>
</tr>
<tr>
<td>-25 % de pierre 10-5 mm (" " " 3)</td>
</tr>
<tr>
<td>-47 % de sable-cribure (" " " 4)</td>
</tr>
<tr>
<td>-3 % de filler minéral (fourni par le silo de filler)</td>
</tr>
<tr>
<td>Si on demande 5,6 % de bitume pour 100 kilos d'enrobé</td>
</tr>
<tr>
<td>Solution:</td>
</tr>
<tr>
<td>Le pourcentage demandé de chaque calibre, pour kg de granulats doigt d'abord être ramené pour 100 kg d'enrobé. Soit : pourcentage demandé x (100 - % de bitume)/100 = 94,4% Les cinq pesées cumulatives nécessaires seront alors :</td>
</tr>
<tr>
<td>- 4000 x 0,10 x 0,944 = 377,6 kg de la trémie 1</td>
</tr>
<tr>
<td>- 4000 x (0,10 + 0,15) x 0,944 = 944,0 kg des trémites 1+2</td>
</tr>
<tr>
<td>- 4000 x (0,10 + 0,15 = 0,25) x 0,944 = 1 888,0 kg des trémites 1+2+3</td>
</tr>
</tbody>
</table>
6.9.4 Dosage massique du bitume
Ce dosage ne se pratique que dans les centrales à débit discontinu. On pompe le bitume dans une trémie doseuse, jusqu'à ce qu'on ait la masse désirée, puis on le déverse sur les granulats dans le malaxeur. La pesée se fait avec un récipient doseur relié, comme pour les granulats, à une bascule à fleau. Cette balance doit être précise à 1 % de sa capacité, vérifiée régulièrement quant à sa justesse et recalibrée si nécessaire pour tenir compte du bitume qui aurait pu se déposer et durcir sur les parois. Ce dosage est ordinairement automatisée et synchronisée avec celui des granulats.

Exemple 6.1

<table>
<thead>
<tr>
<th>EXEMPLE DE DOSAGE PONDÉRAL DU BITUME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Données:</td>
</tr>
<tr>
<td>Pourcentage de bitume demandé = 5,6 % (de la masse de l’enrobé)</td>
</tr>
<tr>
<td>Capacité de la centrale = 8 000 kilos de granulats par fournée</td>
</tr>
<tr>
<td>Solution:</td>
</tr>
<tr>
<td>Pourcentage de bitume demandé en pourcentage des granulats</td>
</tr>
<tr>
<td>selon 4.3.9 du chapitre 4 = 5,6 / (100 - 5,6) 100 = 5,9 %</td>
</tr>
<tr>
<td>Masse de bitume requise = 8 000 x 5,9 = 470 kilos</td>
</tr>
</tbody>
</table>

6.9.5 Dosage volumétrique du bitume
Avant de doser le bitume selon le volume, il faut d’abord exprimer la masse recherchée en volume. Comme ce dernier varie en fonction de la température, il nous faut donc le volume à la température d’utilisation du bitume.

6.9.5.1 Transformation de la masse en volume
Au Québec, suivant le modèle de la centrale d’enrobage, on peut avoir à désigner le volume du bitume en litres, en gallons impériaux ou en gallons américains. Il faut donc savoir avec quelles unités on travaillera avant de transformer la masse en volume. Voir le tableau 6.3 pour les divers volumes par unité de masse.

<table>
<thead>
<tr>
<th>À</th>
<th>1 kg D’EAU OCCUPE</th>
<th>À</th>
<th>1 kg D’EAU OCCUPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>LITRE</td>
<td>GALLON IMP.</td>
<td>GALLON US</td>
</tr>
<tr>
<td>100</td>
<td>1,0574</td>
<td>0,2321</td>
<td>0,2908</td>
</tr>
<tr>
<td>101</td>
<td>1,0581</td>
<td>0,2322</td>
<td>0,2909</td>
</tr>
<tr>
<td>102</td>
<td>1,0588</td>
<td>0,2324</td>
<td>0,2911</td>
</tr>
<tr>
<td>103</td>
<td>1,0595</td>
<td>0,2325</td>
<td>0,2913</td>
</tr>
<tr>
<td>104</td>
<td>1,0604</td>
<td>0,2327</td>
<td>0,2915</td>
</tr>
<tr>
<td>105</td>
<td>1,0608</td>
<td>0,2328</td>
<td>0,2917</td>
</tr>
<tr>
<td>106</td>
<td>1,0615</td>
<td>0,2330</td>
<td>0,2919</td>
</tr>
<tr>
<td>107</td>
<td>1,0622</td>
<td>0,2331</td>
<td>0,2921</td>
</tr>
<tr>
<td>108</td>
<td>1,0628</td>
<td>0,2333</td>
<td>0,2922</td>
</tr>
<tr>
<td>109</td>
<td>1,0635</td>
<td>0,2334</td>
<td>0,2924</td>
</tr>
<tr>
<td>110</td>
<td>1,0642</td>
<td>0,2336</td>
<td>0,2926</td>
</tr>
</tbody>
</table>

Tableau 6.3 Divers volumes par unité de masse: 1 kilogramme
qui débite le volume le plus près de celui recherché ou en réglant le débit de la pompe, quand c'est possible et qu'on dispose du graphique de calibrage. Le bitume est introduit en même temps que les granulats dans le malaxeur.

6.9.5.5 Exemples de dosage volumétrique du bitume

Exemple 6.4

<table>
<thead>
<tr>
<th>EXEMPLE DE TRANSFORMATION DE LA MASSE DE BITUME EN VOLUME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Données:</td>
</tr>
<tr>
<td>Capacité de la centrale : 250 tonnes/heure</td>
</tr>
<tr>
<td>Pourcentage de bitume désiré : 5,6 % de l'enrobé</td>
</tr>
<tr>
<td>Température du bitume : 150°C</td>
</tr>
<tr>
<td>Densité du bitume 1,02</td>
</tr>
<tr>
<td>Solution:</td>
</tr>
<tr>
<td>Masse désirée = 250 x 5,6 / 100 = 14 t/h = 233 kg/min</td>
</tr>
<tr>
<td>Volume selon tableau 6.3 = 233 x 1,0919 = 254,4 litres/min</td>
</tr>
<tr>
<td>= 233 x 0,2396 = 55,83 gallons imp/min</td>
</tr>
<tr>
<td>= 233 x 0,3002 = 69,95 gallons US/min</td>
</tr>
<tr>
<td>Volume corrigé = 254,4 / 1,02 = 249,4 litres/min</td>
</tr>
<tr>
<td>= 55,83 / 1,02 = 54,74 gallons imp/min</td>
</tr>
<tr>
<td>= 69,95 / 1,02 = 68,58 gallons US/min</td>
</tr>
</tbody>
</table>

6.9.6 Particularités d'une centrale TSE

Dans les centrales où un tambour sécheur-enrobeur assure à la fois le séchage et l'enrobage des granulats, on n'a pas besoin de faire un dosage à chaud des granulats. Ces derniers sont introduits tels quels dans le tambour sécheur-enrobeur après leur dosage à froid, mais auparavant, au passage sur le tapis roulant, il faut enregistrer leur masse totale pour un volume donné avec une balance dynamique. Cette masse corrigée selon l'humidité inscrite servira de base pour déterminer par ordinateur le débit de la pompe assurant (pour la densité et la température préalablement fournies) la quantité de bitume demandée par la formule. Conséquemment, il est primordial avec ce type de centrale de prendre toutes les précautions nécessaires pour assurer une régularité rigoureuse dans l'alimentation, dans le taux d'humidité et le dosage des granulats. C'est de cette régularité que dépend la qualité de l'enrobé produit en centrale TSE.

6.10 MALAXAGE

Le malaxage vise à enrober d'un film uniforme de bitume chaque particule de granulat, tout en assurant un mélange complet des divers constituants. Le type de malaxeur varie suivant les centrales.

6.10.1 Malaxeur pour centrale à débit discontinu

Ce malaxeur est une sorte de cuve carrée ou rectangulaire et fermée, traversée par deux arbres de couche parallèles tournant en sens inverse et sur lesquels sont fixées des
Type du liant
Il doit être celui prévu au devis. Rappelons qu'il dépend de la région et des conditions atmosphériques y prévalant. Habituellement, c'est une émulsion de bitume de type CRS-1, mais elle est quelquefois remplacée par un bitume liquéfié comme le RM-20, ou par un RC lorsque la mise en place se fait tard en automne et dans une région très froide.

Taux d'application
Il est précisé au devis. Il s'exprime en litre par mètre carré de bitume résiduel. Mais quelles que soient la nature ou la quantité du solvant, la moyenne de bitume résiduel en place après le séchage se situe généralement à 0,15 L/m².

Techniques d'application, prise ou séchage (rupture)
Comme pour une base granulaire.

Calcul du taux d'application
Le taux de bitume résiduel est le taux du liant appliqué (nombre de litre appliqué par mètre carré) multiplié par le pourcentage en décimales de bitume résiduel que contient le liant. Le nombre de litres appliqués s'obtient en faisant la différence entre les lectures finale et initiale du compteur du distributeur. Ce peut aussi être la différence entre le nombre de litres de liant dans le réservoir au départ et celui après l'application. Il est recommandé, avant le début des travaux, de procéder à une planche d'essais afin de s'assurer que l'application se fera au taux demandé et pour pallier toute défectuosité du système de contrôle du distributeur. Mais pour une vérification sommaire, on peut simplement déposer par terre en avant du distributeur, un carton d'un mètre carré prétaré. Après le passage du distributeur, on récupère le carton qu'on pèse immédiatement à 0,1 g près, puis une seconde fois après la prise ou le séchage. La différence entre la masse du carton avec le liant à la première pesée et celle du carton seul, corrigée pour la densité du liant, donne le taux de liant appliqué, alors que celle calculée à partir de la deuxième pesée donne le taux de bitume résiduel.

Exemples de calcul

Exemple 7.1

<table>
<thead>
<tr>
<th>CALCUL DU TAUX D'APPLICATION D'UN LIANT D'ACCRUCHAGE (SUR UN CARTON D'UN MÈTRE CARRÉ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Données :</td>
</tr>
<tr>
<td>Masses : Carton seul = 115,1 g</td>
</tr>
<tr>
<td>Carton + liant = 321,3 g</td>
</tr>
<tr>
<td>Carton + bitume résiduel = 278,7 g</td>
</tr>
<tr>
<td>Liant: Type (émulsion) = CRS-1</td>
</tr>
<tr>
<td>Mass volumique = 1 010 kg/m³ ou g/L</td>
</tr>
<tr>
<td>Solution :</td>
</tr>
<tr>
<td>Taux de liant total = 321,3 - 115,1 / 1 010 = 0,204 L/m²</td>
</tr>
<tr>
<td>Taux de bitume résiduel = 278,7 - 115,1 / 1 010 = 0,162 L/m²</td>
</tr>
</tbody>
</table>
Exemple 7.2

<table>
<thead>
<tr>
<th>EXEMPLE DE CALCUL DU TAUX D'APPLICATION D'UN LIANT D'ACCROCHAGE</th>
<th>(SUR UNE SECTION COMPLÈTE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Données:</td>
<td></td>
</tr>
<tr>
<td>Section couverte:</td>
<td>- longueur = 700 mètres</td>
</tr>
<tr>
<td></td>
<td>- largeur = 7 mètres</td>
</tr>
<tr>
<td>Liant:</td>
<td>- type = CRS-1</td>
</tr>
<tr>
<td></td>
<td>- bitume résiduel = 80 %</td>
</tr>
<tr>
<td></td>
<td>- quantité appliquée = 1 000 litres</td>
</tr>
<tr>
<td>Solution:</td>
<td></td>
</tr>
<tr>
<td>Surface couverte = 700 x 7</td>
<td>= 4 900 m²</td>
</tr>
<tr>
<td>Taux de liant total = 1 000 / 4 900</td>
<td>= 0,204 L/m²</td>
</tr>
<tr>
<td>Taux de bitume résiduel = 0,80 x 0,204</td>
<td>= 0,162 L/m²</td>
</tr>
</tbody>
</table>

c) Correction (si prévue)
Habituellement, sur toute surface bitumineuse ou en béton de ciment, il est prévu, comme correction, une couche de béton bitumineux de type et d'épaisseur moyenne spécifiés. Sur un revêtement bitumineux, la correction peut aussi se faire par planage mécanique de la surface avec enlèvement d'une partie du vieux revêtement.

Type de béton bitumineux de correction et taux de pose
Ils sont spécifiés dans le marché. C'est généralement un **EB-10** et le taux est de 20 kg/m².

Équipement
La mise en place de la couche de correction peut se faire soit à l'aide d'une niveleuse à pneus lisses ou d'un finisseur classique (voir chapitre 8 à équipement). Lorsque la correction se fait par planage mécanique, l'équipement utilisé doit répondre aux spécifications du fabricant et être adapté aux circonstances. De plus, tous les matériaux enlevés doivent être ramassés pour être mis au rebut ou récupérés et la surface planée doit être balayée à fond avant l'application du liant d'accrochage s'il est prévu.

Compaction
Indépendamment du genre de correction réalisée, la surface à recouvrir doit être compactée suivant les exigences prévues. L'équipement alors utilisé doit être du type décrit au chapitre 9.

7.2.6 Conditions de la surface à recouvrir
L'application des liants d'amorçage ou d'accrochage et la mise en place du béton bitumineux de correction ne se font qu'après vérification de leur provenance, type et/ou classe et de leur conformité aux exigences spécifiées. La surface doit être propre, sèche et la température de 5°C et plus. Le taux d'humidité doit être inférieur à 80 % lors de l'application du liant d'amorçage ou d'accrochage.
7.2.7 Conditions météorologiques
Mis à part la réparation d’une surface granulaire, les conditions météorologiques à respecter sont les mêmes que lors de la mise en place des enrobés pour revêtement.

EXERCICES 7
7.1 Au Québec, quel type de véhicule est surtout utilisé pour le transport des bétons bitumineux?
7.2 Pour lubrifier la benne des camions, quel produit recommande-t-on? Lesquels faut-il éviter?
7.3 Quels facteurs servent à déterminer le nombre de camions nécessaires au transport de l’enrobé de la centrale au chantier?
7.4 Pourquoi faut-il munir d’une bâche la benne des camions servant au transport des bétons bitumineux?
7.5 Quelle est la perte maximale de chaleur tolérée entre le chargement et le déchargement de l’enrobé?
7.6 Quels sont les facteurs qui peuvent contribuer au refroidissement d’un enrobé bitumineux préparé en centrale à chaud?
7.7 À part les renseignements requis avant le préparation de la surface à recouvrir, nommez trois tâches de l’entrepreneur.
7.8 En quoi consiste la réparation d’une base granulaire destinée à recevoir un revêtement en béton bitumineux?
7.9 Quelles sont les réparations mineures qui peuvent être nécessaires avant la préparation finale d’un revêtement bitumineux destiné à recevoir un nouveau revêtement?
7.10 Que peut-on qualifier de réparation majeure avant la mise en œuvre d’une couche d’usure sur un vieux revêtement de béton bitumineux?
7.11 Habituellement à quel taux applique-t-on un liant d’imprégnation ou bitume d’amorçage?
7.12 Sur quel genre de surface applique-t-on un liant d’impression ou liant d’accrochage?
7.13 À l’aide des données qui suivent, calculez le taux total d’application d’un liant d’amorçage.
7.14 Si, sur la même surface (problème précédent), on applique comme liant d’accrochage 1 150 litres d’une émulsion de bitume composée de 75% de bitume routier PG 52-34 et à 25% d’eau, quel sera le taux d’application en bitume résiduel?
7.15 Avant la mise en place d’un nouvel enrobé bitumineux, comment corrige-t-on un revêtement bitumineux en place?
7.16 Avant la préparation finale, dans quelles conditions doit être la surface destinée à recevoir un enrobé bitumineux?
9.6.5.2 Vérification de la texture
Enfin, on doit vérifier la texture du revêtement. Cela se fait à l’œil, sans instruments. La texture doit être une mais légèrement rugueuse (non lisse ou glissante), uniforme et sans plaque de bitume ressuyé.

EXERCICES 9
9.1 Quels sont les deux buts du compactage?
9.2 Quelles forces entrent en jeu dans le compactage?
9.3 Quelles sont les trois principales phases du compactage?
9.4 Entre quelles températures doit débuter le compactage?
9.5 À quelle température le cylindrage n’est plus efficace?
9.6 Nommez et décrivez brièvement les deux modes de compactage.
9.7 En quel mode de compactage fonctionne le rouleau pneumatique? le rouleau d’acier?
9.8 Quel est le nombre minimum de rouleaux requis?
9.9 Nommez deux exigences particulières au rouleau d’acier? au rouleau pneumatique? au rouleau vibrant?
9.10 En quoi le compactage peut-il être affecté par la température de la surface à recouvrir? par la température ambiante et les conditions atmosphériques? par la température de l’enrobé?
9.11 Un enrobé fabriqué avec un bitume 52–34 est-il plus difficile à compacter qu’avec un bitume 58–28
9.12 Quelles propriétés des particules de granulats influent sur la facilité de compactage?
9.13 Jusqu’à quel pourcentage de compacité un finisseur en bonne condition peut-il amener le revêtement?
9.14 Nommez dans l’ordre les cinq premières opérations de la séquence de cylindrage.
9.15 Au début de chaque passe, où doit être la partie motrice du rouleau?
9.16 Quelle est la vitesse idéale pour cylindrer?
9.17 Pour le cylindrage du joint transversal en mode statique, sur quelle partie surtout du revêtement doit circuler le rouleau? En mode dynamique?
9.18 Dans une courbe, lorsque deux finisseurs se suivent, par quel bord extérieur doit débuter le cylindrage?
9.19 Pour une épaisseur de moins de 75 mm, où se place le rouleau pour cylindrer le bord extérieur en mode statique?
9.20 Avec quel type de rouleau doit-on compléter le cylindrage?
9.21 Quelle doit être l’épaisseur minimum de la couche d’enrobé pour employer le mode dynamique?
9.22 En quoi diffère le cylindrage d’un joint longitudinal en mode statique de celui en mode dynamique?
9.23 Si la densité brute du revêtement compacté est 2,332 et sa densité maximale 2,451, quel est son taux de compacité?
10

GESTION ET ASSURANCE DE LA QUALITÉ

Nous avons vu jusqu'ici de quoi est constitué le béton bitumineux, comment on le fabrique, on le met en place et on le compacte. Nous allons maintenant aborder un sujet particulièrement intéressant pour le technicien en génie civil : le contrôle de sa qualité. Pour ce faire, nous allons consacrer les trois prochains chapitres au sujet, en découvrant d'abord les activités reliées au concept qualité, dont principalement celles découlant du contrôle, puis en examinant de près les plans d'inspection et d'essais dans le contrôle de la fabrication (chapitre 11) et de la mise en œuvre (chapitre 12).

10.1 QU'EST CE QUE LA QUALITÉ ?
Selon la norme ISO 9000 de 2000, la qualité est l'aptitude d'un ensemble de caractéristiques à satisfaire des exigences.

En construction routière les besoins changent et la qualité doit continuellement s'adapter à ces nouveaux besoins. De plus, les équipements et techniques de fabrication et de mise en œuvre des enrobés bitumineux évoluent rapidement, de sorte que les entreprises doivent constamment mettre en place des systèmes de plus en plus efficaces et performants pour ajuster leur produit à des besoins qui évoluent sans cesse.

La qualité c'est plus que le degré d'excellence d'un produit à un autre, plus que sa performance, sa durabilité, sa renommée ou son coût élevé. Ainsi une Corvette, malgré ses performances, sa renommée et son coût élevé, ne pourra satisfaire (à cause d'un espace insuffisant) une famille de quatre enfants qui désire partir en voyage. Pas plus que le complet signé Robichaud sera le meilleur choix à faire comme uniforme de travail pour le signaleur. En réalité le mot "qualité" se ramène à la satisfaction des besoins.

10.2 DÉFINITION DES PRINCIPAUX TERMES RELATIFS À LA QUALITÉ

- Politique qualité: Les orientations et intentions générales d'un organisme en matière qualité.
b) Les contraintes touchent entre autre :
- la région concernée et du climat y prévalant;
- la nature du sol en place et de sa capacité portante;
- les matériaux disponibles et de leur accessibilité;
- les coûts prévus de construction et d'entretien par rapport aux budgets disponibles;
- les réglementations en place comme le zonage, les limitations des espaces, etc.

c) L'aspect final du produit doit être inclus dans cette première étape et toucher à :
- l'environnement: gazonnement, arbre, accotements (matériaux, largeur, sécurité, etc.);
- l'apparence générale et l'uniformité de texture;
- conception des courbes, pentes, voies d'accès, etc.

10.3.1.2 Expression des besoins
Quand il connaît ses besoins exactement, le client doit les exprimer clairement au fournisseur.

Les besoins sont définis à l'aide du marché et des divers documents contractuels qui l'accompagnent ou devraient en faire partie : Cahier des charges et devis généraux, cahier des clauses générales, cahier de clauses techniques, bordereau des quantités, devis spécial, plan de localisation, addenda, annexes, etc.

Les besoins ou services entraînent des exigences particulières concernant certaines propriétés et caractéristiques régies par des normes. Dans la fabrication et la mise en œuvre des enrobés bitumineux, ces exigences touchent les propriétés et caractéristiques autant des constituants et du produit (bitume, granulat, enrobé) que des modes de fabrication, de mise en place, de compactage etc. Par exemple, ce sera pour :
- le liant: sa classe, sa viscosité, sa résistance à l'oxydation, etc.;
- le granulat: sa nature, sa grosseur, sa durabilité, sa résistance à l'abrasion, etc.;
- l'enrobé: sa granulométrie, sa teneur en liant, sa stabilité, etc.;
- la fabrication: la température, le malaxage, le dosage, etc.;
- la mise en place: le taux de pose, les divers profils, etc.;
- le compactage: le taux de compacité, l'uniformité, etc.;
- les autres particularités: l'état de la machinerie (distributrice à liant d'accrochage, finisseur, rouleaux compacteurs), l'état de la surface à recouvrir, les conditions atmosphériques, etc.

Le client doit en outre définir :
- ses propres responsabilités et celles des divers intervenants (entrepreneur, fabricant, fournisseur du liant et des granulats, etc.) quant au contrôle global de la qualité.
- le genre de contrôle à exercer par chacun et ses modalités.

10.3.2 De la part du fournisseur
Pour assurer au client la satisfaction désirée, le fournisseur doit d'abord être qualifié, avoir une politique sur la qualité, puis montrer qu'il l'applique en suivant un plan d'assurance de la qualité conforme à la norme ISO 9001 (2000)
10.3.2.1 Qualification

10.3.2.2 Politique relative à la qualité
La politique du fournisseur ou de l'entrepreneur sur la qualité est la ligne de conduite ou philosophie qu'il entend suivre et le niveau de qualité recherchée. Cette politique doit spécifier le ou l'ensemble des produits ou services couverts, être expliquée à tous les employés et obtenir leur adhésion. Car elle ne peut être appliquée efficacement sans la coopération de tous. C'est elle qui fournit au client l'image que l'entreprise veut projeter.

REMARQUE:
Dans une entreprise il n'y a pas de responsable de la qualité elle-même; tous en sont responsables.

10.3.3 Relation entre le client et le fournisseur
La qualité suppose aussi qu'une certaine confiance règne entre le client et l'entrepreneur puisque le client doit avoir fait l'audit des documents de l'entrepreneur prouvant la mise en place d'un plan d'assurance de la qualité conforme et son application (contrôle de la qualité).

Certains organismes utilisent divers moyens pour encourager les entreprises à se doter d'un plan d'assurance de la qualité. C'est ainsi que, parfois, seules les entreprises disposant de plans complets d'assurance de la qualité sont invitées à soumissionner. En d'autres occasions un client (comme le MTQ) peut exiger que, pour l'accepter comme soumissionnaire, l'entreprise soit accréditée selon la norme ISO 9002 par un organisme reconnu par le Conseil national des normes.

10.4 ÉVALUATION DES RESPONSABILITÉS
ET DU COÛT DE LA QUALITÉ
Comme on l'a vu plus avant, la qualité présuppose que le client prenne certaines mesures, tandis que d'autres incombent au fournisseur ; de sorte que chacun a une part

10.4.1 Répartition des responsabilités
Grosso modo, on peut avancer que les responsabilités se répartissent ainsi :
- 50% vont au client et au concepteur.
- 50% au fournisseur. De celles-ci, 10% sont liées aux matériaux (granulats et bitume), 20% à la réalisation (fabrication et mise en œuvre) et 20% dépendent de divers critères dont l'expérience et la compétence des employés, le choix et la qualité de l'équipement, etc.
Il importe donc de faire bon et bien tout de suite et d’exercer un contrôle adéquat dès le début; la réputation et la compétitivité de l’entreprise y gagneront.

<table>
<thead>
<tr>
<th>AUGMENTATION DES PERTES SELON LE TEMPS D’ACTION</th>
<th>DÉFAUTS RELEVÉS À</th>
<th>PERTE RELATIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>- la conception</td>
<td>$</td>
<td></td>
</tr>
<tr>
<td>- la réception des matériaux</td>
<td>$S</td>
<td></td>
</tr>
<tr>
<td>- durant la fabrication</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>- après la fabrication</td>
<td>SS</td>
<td></td>
</tr>
<tr>
<td>- pendant la mise en place</td>
<td>$SSSS$</td>
<td></td>
</tr>
<tr>
<td>- pendant le compactage</td>
<td>$SSSS$</td>
<td></td>
</tr>
<tr>
<td>- à la livraison (par le client)</td>
<td>REVENUES ou NON-PAIEMENT</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 10.1 Coûts supplémentaires engendrés par la non-qualité, par les délais du contrôle de la qualité

10.5.2 Pour le client
Pour le client, la qualité permet de réduire les coûts de contrôle et ceux engendrés par l’entretien ou le remplacement prématuré d’un revêtement défectueux. La route dure plus longtemps, tout en étant plus fiable, confortable et sécuritaire pour les usagers.

10.6 COMMENT LE FOURNISSEUR PEUT ASSURER LA QUALITÉ
Rappelons brièvement les principales tâches que doit remplir le fournisseur pour gérer et assurer la qualité:
- élaboration d’une politique sur la qualité (figure 10.1);
- organisation et gestion de la qualité avec au départ la nomination (avec un mandat clair et précis) d’un responsable de la gestion de la qualité;
- planification des activités de gestion de la qualité avec adhésion de tout le personnel à la politique, motivation et formation des employés;
- élaboration et mise en place d’un programme d’assurance de la qualité et surtout de son suivi par un contrôle continu de l’application du programme et des procédés mis en place.
- **Certification selon la norme ISO 9001 (2000)**

Nous ne verrons pas en détail toutes ces activités. Nous nous limiterons ici au PAQ et au contrôle de la qualité, principalement aux documents qui en démontrent l’existence et la mise en application, soit le *Manuel de la qualité* et le *Plan d’inspection et d’essais* qui en résulte.
<table>
<thead>
<tr>
<th>PROPRIÉTÉS CONTRÔLÉES</th>
<th>DÉFAUTS OBSERVÉS PAR JOUR</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>TENUE EN LIANT</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>% DE VIDE</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>% PASSANT AU 80 µm</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>VCB</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>GRANULOMÉTRIE</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TEMPÉRATURE</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>STABILITÉ</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DÉFORMATION</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Tableau 10.2 Collecte de données pour l'analyse de Pareto

Figure 10.2 Exemple d’application du diagramme de Pareto

10.6.2 Manuel de la qualité
Le manuel de la qualité est la preuve de l'existence et du suivi d'un programme d'assurance de la qualité. C'est sur lui que portera l'audit du client ou des organismes d'accréditation pour juger de la valeur du programme d'assurance de la qualité et de sa conformité aux exigences de la norme ISO 9001 (2000). On doit pouvoir y trouver, en plus de la raison sociale et de l'adresse de l'entreprise:
- sa politique sur la qualité;
- son organigramme et les responsabilités de chacun (figure 10.1);
- une description détaillée du champ d’opération touché par le plan d’assurance de la qualité;
- le *curriculum vitae* des administrateurs, des professionnels, des contremaîtres et du personnel technique;
- les tâches remplies par chacun des employés, leur expérience, et le mode de recrutement ou de formation;
- une description de l’organisation physique des lieux, des équipements, etc.;
- la liste et le lieu d’entreposage des divers documents techniques et administratifs nécessaires à la réalisation des tâches, produits et services;
- les processus de fabrication, les méthodes d’essais, etc.;
- le ou les modes de contrôle et les points de contrôle prévus;
- la procédure de vérification des résultats du contrôle: contrôle externe, autocontrôle, programmes d’échanges, produits ou matériau de référence, etc.;
- le contrôle effectué à la réception des matériaux;
- le genre de contrôle des équipements et des conditions de travail (locaux, sécurité, etc.);
- le ou les plans d’inspection et d’essais relatifs à la qualité recherchée.

10.6.3 Exercice du contrôle de la qualité

C’est à l’entrepreneur de se doter d’un plan d’assurance de la qualité répondant aux exigences du client et de prendre les moyens qu’il juge nécessaires pour assurer lui-même le contrôle de la qualité. Toutefois le client se réserve toujours le droit d’exercer son propre contrôle, que ce soit par audit du manuel de la qualité ou autrement.

10.6.3.1 Genres de contrôle

Quand une entreprise adopte une politique sur la qualité, elle décide quels éléments feront l’objet du plan d’assurance de la qualité (matériaux, enrobé, mise en œuvre). Avant de parler de contrôle de la qualité, il faut que le responsable de la qualité puisse répondre aux questions suivantes:

- **Quoi contrôler?** Des échantillons (chaque fournie, chaque livraison, chaque bande de revêtement)? Des lots (tonnes de bitume, de granulats, d’enrobés produits ou mis en place)?

 Avec les enrobés bitumineux, on ne peut physiquement et efficacement contrôler chaque fournie, tonne, camion, etc. On procède donc à partir d’ensembles ou lots dont la dimension est habituellement spécifiée par le client.
- **Quand contrôler?** À la réception? Durant la réalisation et à quelle phase? À la livraison au client?
- **Comment contrôler?** Par des lectures, des relevés, des essais?
- **Où contrôler?** Chez les fournisseurs, à la centrale, en chantier? L’endroit où contrôler dépend du genre de contrôle exercé ou exigé par le client.
- lot de livraison (quantité livrée en une seule opération);
- lot d'emploi (quantité utilisée pour la réalisation d'une partie du revêtement : couche de base, de surface, chaque kilomètre, etc.)
On appelle « individu » le matériau, le produit, le relevé ou le résultat obtenu à chaque échantillonnage. L'ensemble des individus prélevés dans un lot forme ce qu'on appelle une « population ».

10.6.3.3 Laboratoires d'inspection et d'essais
Comme vu plus avant, le client et l'entreprise peuvent eux-mêmes assurer, selon le cas, le contrôle extérieur et externe ou le confier, en tout ou en partie à l'entreprise privée. Dans les deux cas l'intervenant, habituellement désigné sous le vocable de laboratoire d'inspection et d'essais, doit être en mesure de démontrer qu'il est en mesure d'assurer lui aussi la qualité des services requis. Il doit faire la preuve de son accréditation par un palier de gouvernement reconnu (ACNOR, BNQ ou MTQ) et démontrer qu'il exerce un contrôle interne appelé alors autocontrôle.

a) Accréditation
Au Québec, tout laboratoire d'essais peut être accrédité selon la norme ISO CEI Guide 25 par le BNQ ou un autre registraire reconnue par l'ACNOR ; pour une ou plusieurs spécialités différentes (enrobés bitumineux, bitume, sols, granulats, béton de ciment, métallurgie, chimie, etc. Les normes qui définissent les conditions à remplir, incluent non seulement l'audit du manuel de la qualité tel que prescrit, mais aussi la vérification sur place de toutes les données qui y sont incluses, entre autres :
- la réception, l'identification, l'entreposage temporaire et le remisage des échantillons;
- la présence des normes d'essais utilisés et documents techniques ou administratifs nécessaires (CCDG, spécifications, manuel d'opération des appareils, etc.);
- la scolarité et l'expérience des employés touchés;
- la présence et l'état de l'appareillage prescrit dans les normes d'essais;
- le système d'autocontrôle et son suivi;
- la réalisation de certains essais.
Une fois émise, l'accréditation peut être révoquée, si lors d'une des visites subséquentes, le laboratoire n'est plus en mesure de satisfaire aux exigences.

b) Autocontrôle
Tout laboratoire d'essais, même s'il n'est pas accrédité doit être en mesure d'assurer, face au client, la qualité de son produit, en l'occurrence les résultats d'essais. Le contrôle exercé est surtout un contrôle intérieur et interne. Le contrôle interne est le plus souvent appelé autocontrôle et porte par exemple sur :
- L'étaillonnage de tous les appareils et instruments de mesure (balances, thermomètres, récipients volumétriques, presses, etc.) et autres appareils exigeant des chartes d'étalonnage dont les études;
- la vérification des appareils, instruments et accessoires, d'abord à la réception puis à
Le contrôle de la qualité dans la fabrication des enrobés bitumineux. comporte trois volets :
- le contrôle des matériaux (le liant et les granulats);
- le contrôle du produit fini;
- le contrôle de l'équipement et du procédé de fabrication.

11.1 CONTRÔLE DES LIANTS
Voyons d'abord comment se fait le contrôle des liants.

11.1.1 Organisation
Les raffineries de pétrole, qui fournissent les liants bitumineux de base, ont chacune leur plan d'assurance de la qualité qui doit répondre aux exigences de la norme ISO 9001 (2000). Ce plan inclut un contrôle sur la matière première (le pétrole brut acheté) un contrôle intérieur sur la fabrication et le produit fini, contrôle élaboré par le responsable de la gestion de la qualité de la raffinerie et enfin un contrôle extérieur assuré par le MTQ. Le plan d'inspection et d'essais prévoit le niveau de tolérance (par exemple : deux résultats non conformes dans le même lot ou dans deux lots différents au-dessus duquel des correctifs immédiats doivent être apportés. Il inclut aussi l'audit des relevés et des résultats plus un échantillonnage sur place, avant expédition à l'utilisateur, par le représentant du MTQ pour chaque jour de production. L'échantillon prélevé est divisé en deux parties. L'une sera analysée par le MTQ et l'autre conservée pour servir de témoin en cas de contestation des résultats par le fournisseur.
Toutefois, selon les besoins et/ou les actions prévues dans le plan d'inspection et d'essais, le client utilisateur pourra exercer un dernier contrôle à la réception du produit. Ce contrôle, selon le niveau de confiance démontré, pourra être simplement visuel ou plus poussé et inclure :
- la vérification du produit livré (classe, provenance, masse, température, densité, etc.) par lecture du coupon de livraison;
- la vérification du moyen de transport utilisé;
- la vérification des unités de stockage (désignation, propreté, équipement, etc.) et du transfert du liant au réservoir.
11.1.3 Indicateurs de la qualité
Les diverses caractéristiques à contrôler sont aussi appelées les «indicateurs de la qualité». Nous avons vu au chapitre 2 les divers essais portant sur les bitumes routiers, les bitumes fluidifiés, les émulsions de bitume et les bitumes modifiés. C’est pourquoi nous ne faisons qu’enumer ci-dessous les principales propriétés ou caractéristiques qui doivent être contrôlées sur le produit reçu au regard des spécifications.

Pour les bitumes routiers, on vérifiera :
- Le grade de performance (PG);
- le point d’éclair
- la viscosité Brookfield
- l’étuvage en couche mince
- le point de ramollissement
- la solubilité
- la température

Pour les bitumes liquéfiés, on déterminera la nature et la quantité du solvant (distillation), de même que la viscosité.

Dans les émulsions de bitume, on contrôlera la quantité d’eau et d’agent émulsif (distillation), la charge des particules et la viscosité.

Enfin dans les bitumes modifiés, il faudra vérifier les caractéristiques suivantes :

- grade de performance ;
- viscosité Brookfield ;
- point de ramollissement ;
- solubilité ;
- susceptibilité à la température ;
- retour d’élasticité ;
- rapport force-ductilité ;
- fraîlilité Fraas.

11.2 CONTRÔLE DES GRANULATS
Tout comme les liants, les granulats doivent être contrôlés par le producteur et le client, puis par l’entreprise utilisatrice, celle qui fabrique les enrobés bitumineux.

11.2.1 Organisation
Jusqu’ici le MTQ et ses principaux services supervisait, à titre de principal client la prospection et la production des granulats pour usages routiers. Avant même leur production, les granulats potentiels sont échantillonnés et analysés par le MTQ, et classés suivant l’usage à lequel ils pourraient satisfaire. Par la suite le producteur doit soumettre, avant utilisation, chaque calibre de granulats qu’il produit ou compte utiliser ou vendre pour la fabrication des enrobés bitumineux. Une fois le granulat accepté par le client, ce dernier procède à un contrôle extérieur du produit fini, tandis que le producteur assure le contrôle intérieur selon le plan d’assurance de la qualité qui couvre toute la production, de la mise à découvert au produit fini. Si l’utilisateur ou entreprise fabricant les enrobés bitumineux n’est pas le producteur des granulats, il appartient à cette dernière d’exercer un contrôle extérieur à la réception et celui à l’entreposage.

Les activités de contrôle liées à la réception et à l’entreposage des granulats en centrale d’enrobage sont les suivantes:
- vérification, à la réception, de chaque calibre ou classe de granulats (gravier, pierre, sable, filler minéral);
- inspection des quantités livrées;
<table>
<thead>
<tr>
<th>GROSSEUR NOMINALE DU GRANULAT</th>
<th>MASSE MINIMALE APPROXIMATIVE DU MÉLANGE NON COMPACTÉ (kg)</th>
<th>SUPERFICIE MINIMALE APPROXIMATIVE DU MÉLANGE COMPACTÉ (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,5</td>
<td>1,8</td>
<td>232</td>
</tr>
<tr>
<td>5</td>
<td>1,8</td>
<td>232</td>
</tr>
<tr>
<td>10</td>
<td>3,6</td>
<td>232</td>
</tr>
<tr>
<td>14</td>
<td>5,4</td>
<td>413</td>
</tr>
<tr>
<td>20</td>
<td>7,3</td>
<td>645</td>
</tr>
<tr>
<td>28</td>
<td>9,1</td>
<td>929</td>
</tr>
<tr>
<td>40</td>
<td>11,3</td>
<td>929</td>
</tr>
<tr>
<td>56</td>
<td>15,9</td>
<td>1453</td>
</tr>
</tbody>
</table>

NORME NQ 2300-05

Tableau 11.2 Masse minimale des échantillons d’enrobés selon la grosseur nominale du gros granulat

11.3.2.2 Échantillonnage sur la route à l’aide d’un carton ou d’une plaque d’échantillonnage (NQ 2300-005)

On échantillonne sur la route chaque fois que c’est possible, car l’échantillon permet de vérifier à la fois l’enrobé produit et le revêtement mis en place.

a) Outillage nécessaire

- Plaque d’échantillonnage rigide, en métal, ou autre matériau approprié, d’environ 650 mm sur 650 mm et à laquelle sont fixés, à au moins deux coins, des fils de fer aussi longs que la largeur du finisseur (figure 11.16). Lorsque ce genre de plaque n’est pas disponible, on peut utiliser un carton rigide de mêmes dimensions.
- Croix grecque en métal rigide aux dimensions prévues et avec au centre une tige pour en permettre la manipulation (figure 11.17).
- Pelle à main.

![Diagram](image)

Bureau de Normalization du Québec - NQ 2300-005

Figure 11.16 Plaque d’échantillonnage
J. ENETREPOSAGE DE L’ENROBÉ EN SILO
- Inspection du moyen de transport interne du malaxeur au silo: contamination, protection, etc.;
- Vérification du silo d’entreposage: ségrégation, isolation, accumulation d’enrobé aux parois, mesure du niveau de remplissage, etc.

K. CHARGEMENT ET PESÉE DE L’ENROBÉ
- Inspection des moyens de transport: benne (propreté, fond métallique, produit lubrifiant, etc.), bache et état général;
- Inspection du chargement: uniformité, ségrégation, etc.;
- Vérification de l’étalonnage annuel de la balance.

L. TRANSPORT DE L’ENROBÉ
- Inspection des bons de livraison: heure de départ, endroit, type d’enrobé, numéro du transporteur, distance de transport, masses (totale, à vide, nette), etc.;
- Vérification de l’utilisation de la bache et de ses attaches.

Figure 11.18 Exemple d’un diagramme de circulation d’un plan d’inspection et d’essais dans le contrôle de la fabrication des bétons bitumineux (EB-14)
<table>
<thead>
<tr>
<th>N°</th>
<th>DESCRIPTION</th>
<th>RÉFÉRENCE, FORMULE, etc.</th>
<th>PAR</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1aE</td>
<td>Échantillonnage de la pierre 10-14 par le fournisseur</td>
<td>NQ 2560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1aC</td>
<td>Essais de contrôle de la qualité par le fournisseur</td>
<td>selon CCDG du client</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1bE</td>
<td>Échantillonnage de la pierre 5-10 par le fournisseur</td>
<td>NQ 2560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1bC</td>
<td>Essais de contrôle de la qualité par le fournisseur</td>
<td>selon CCDG du client</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1cE</td>
<td>Échantillonnage de la crible par le fournisseur</td>
<td>NQ 2560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1cC</td>
<td>Essais de contrôle de la qualité par le fournisseur</td>
<td>selon CCDG du client</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1dE</td>
<td>Échantillonnage du sable par le fournisseur</td>
<td>NQ 2560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1dC</td>
<td>Essais de contrôle de la qualité par le fournisseur</td>
<td>selon CCDG du client</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1eE</td>
<td>Échantillonnage du filler minéral par le fournisseur</td>
<td>NQ 2560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1eC</td>
<td>Essais de contrôle de la qualité par le fournisseur</td>
<td>selon CCDG du client</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2aE</td>
<td>Échantillonnage de la pierre 10-14 par le client</td>
<td>NQ 2560 V-1037</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2aA</td>
<td>Essais d'acceptation ou de contrôle par le client</td>
<td>NQ 2560 TAB. 3C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2bE</td>
<td>Échantillonnage de la pierre 5-10 par le client</td>
<td>NQ 2560 V-1037</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2bA</td>
<td>Essais d'acceptation ou de contrôle par le client</td>
<td>NQ 2560 TAB. 3C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2cE</td>
<td>Échantillonnage de la crible de pierre par le client</td>
<td>NQ 2560 V-1037</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2cA</td>
<td>Essais d'acceptation ou de contrôle par le client</td>
<td>NQ 2560 TAB. 3C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2dE</td>
<td>Échantillonnage du sable par le client</td>
<td>NQ 2560 V-1037</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2dA</td>
<td>Essais d'acceptation ou de contrôle par le client</td>
<td>NQ 2560 TAB. 3C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2eE</td>
<td>Échantillonnage du filler minéral par le client</td>
<td>NQ 2560 V-1037</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2eA</td>
<td>Essais d'acceptation ou de contrôle par le client</td>
<td>NQ 2560 TAB. 3C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3aE</td>
<td>Échantillonnage de la pierre 10-14 par le client</td>
<td>NQ 2560 V-1037</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3aA</td>
<td>Essais d'acceptation ou de contrôle par le client</td>
<td>NQ 2560 TAB. 3C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3bE</td>
<td>Échantillonnage de la pierre 5-10 par le client</td>
<td>NQ 2560 V-1037</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3bA</td>
<td>Essais d'acceptation ou de contrôle par le client</td>
<td>NQ 2560 TAB. 3C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3cE</td>
<td>Échantillonnage de la crible de pierre par le client</td>
<td>NQ 2560 V-1037</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3cA</td>
<td>Essais d'acceptation ou de contrôle par le client</td>
<td>NQ 2560 TAB. 3C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3dE</td>
<td>Échantillonnage du sable par le client</td>
<td>NQ 2560 V-1037</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3dA</td>
<td>Essais d'acceptation ou de contrôle par le client</td>
<td>NQ 2560 TAB. 3C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3eE</td>
<td>Échantillonnage du filler minéral par le client</td>
<td>NQ 2560 V-1037</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3eA</td>
<td>Essais d'acceptation ou de contrôle par le client</td>
<td>NQ 2560 TAB. 3C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3fE</td>
<td>Échantillonnage du bitume par le client</td>
<td>ASTM D-140 V-2246</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3fA</td>
<td>Essais d'acceptation ou de contrôle par le client</td>
<td>NQ 2300 TAB. 4C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5aV</td>
<td>Inspection à la réception (calibre et bon de livraison)</td>
<td>J-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5bV</td>
<td>Inspection à la réception (calibre et bon de livraison)</td>
<td>J-1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 11.5 Description des opérations d'un plan d'inspection et d'essais dans le contrôle de la fabrication des bétons bitumineux (EB-14)
<table>
<thead>
<tr>
<th>N°</th>
<th>DESCRIPTION</th>
<th>RÉFÉRENCE, FORMULE, etc.</th>
<th>PAR</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5cV</td>
<td>Inspection à la réception (bon de livraison)</td>
<td>J-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5dV</td>
<td>Inspection à la réception (bon de livraison)</td>
<td>J-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5eV</td>
<td>Inspection à la réception (bon de livraison)</td>
<td>J-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5fV</td>
<td>Inspection à la réception (bon de livraison: grade, etc.)</td>
<td>J-1, V-2246</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6aV</td>
<td>Inspection de la mise en tas de la pierre 10-14</td>
<td>J-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6aE</td>
<td>Échantillonnage de la pierre 10-14</td>
<td>NQ 2560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6aC</td>
<td>Essais de contrôle (humidité et analyse granulométrique, pierre 10-14)</td>
<td>NQ 2560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6bV</td>
<td>Inspection de la mise en tas de la pierre 5-10</td>
<td>J-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6bE</td>
<td>Échantillonnage de la pierre 5-10</td>
<td>NQ 2560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6bC</td>
<td>Essais de contrôle (humidité et analyse granulométrique, pierre 5-10)</td>
<td>NQ 2560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6cV</td>
<td>Inspection de la mise en tas de la crible de pierre</td>
<td>J-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6cE</td>
<td>Échantillonnage de la crible</td>
<td>NQ 2560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6cC</td>
<td>Essais de contrôle (humidité et analyse granulométrique, crible de pierre)</td>
<td>NQ 2560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6dV</td>
<td>Inspection de la mise en tas du sable</td>
<td>J-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6dE</td>
<td>Échantillonnage du sable</td>
<td>NQ 2560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6cC</td>
<td>Essais de contrôle (humidité et analyse granulométrique, sable)</td>
<td>NQ 2560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6eV</td>
<td>Inspection de la mise en silo du filler minéral</td>
<td>J-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6fV</td>
<td>Inspection de la mise en réservoir du bitume</td>
<td>J-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9aV</td>
<td>Inspection de l'entreposage du 10-14 dans la trémie froide</td>
<td>J-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9bV</td>
<td>Inspection de l'entreposage du 5-10 dans la trémie froide</td>
<td>J-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9cV</td>
<td>Inspection de l'entreposage de la crible dans la trémie froide</td>
<td>J-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9dV</td>
<td>Inspection de l'entreposage du sable dans la trémie froide</td>
<td>J-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11E</td>
<td>Échantillonnage du mélange de granulats après dosage</td>
<td>NQ 2560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11C</td>
<td>Essai d'analyse granulométrique du mélange (contrôle dosage)</td>
<td>NQ 2560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12E</td>
<td>Échantillonnage du mélange de granulats après séchage</td>
<td>NQ 2560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12C</td>
<td>Essai d'humidité sur le mélange</td>
<td>NQ 2560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12L</td>
<td>Lecture de la température des granulats (pyromètre ou mesure)</td>
<td>J-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15V</td>
<td>Inspection du dosage (vérification des pesées)</td>
<td>J-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16V</td>
<td>Inspection du malaxage (mesure de la durée)</td>
<td>J-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19V</td>
<td>Inspection du chargement des camions</td>
<td>J-3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 11.5 (suite) Description des opérations d'un plan d'inspection et d'essais dans le contrôle de la fabrication des bétons bitumineux (EB-14)

NOTE: Les opérations d'inspection et d'essais durant la fabrication présupposent que toutes les unités de la centrale, la balance de pesée, les camions ainsi que les aires de mise en tas ont été contrôlés.
<table>
<thead>
<tr>
<th>NO.</th>
<th>DESCRIPTION</th>
<th>REFERENCE</th>
<th>PAR</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1V</td>
<td>inspection (enrobé, bon de livraison etc.)</td>
<td>C - 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1L</td>
<td>lecture de la température de l'enrobé</td>
<td>C - 2</td>
<td>CCDG</td>
<td></td>
</tr>
<tr>
<td>2V</td>
<td>inspection du camion et du déchargement</td>
<td>C - 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3V</td>
<td>inspection de l'alimentation à l'unité profiloise</td>
<td>C - 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4V</td>
<td>inspection de la mise en place</td>
<td>C - 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5E</td>
<td>échantillonnage de l'enrobé</td>
<td>NO 2300</td>
<td>V - 1037</td>
<td></td>
</tr>
<tr>
<td>5C</td>
<td>essais de contrôle en laboratoire</td>
<td>NO 2300</td>
<td>V - 1695</td>
<td></td>
</tr>
<tr>
<td>5M</td>
<td>calcul du taux de pose (mesure de l'épaisseur)</td>
<td>C - 2</td>
<td>marché</td>
<td></td>
</tr>
<tr>
<td>6V</td>
<td>inspection de la confection des joints</td>
<td>C - 1, C - 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6M</td>
<td>mesure à la règle, de la hauteur des joints</td>
<td>C - 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7V</td>
<td>inspection des engins et des séquences du compactage</td>
<td>C - 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8V</td>
<td>mesure au nuclédosémiètre de la densité du revêtement</td>
<td>C - 1,</td>
<td>planche</td>
<td></td>
</tr>
<tr>
<td></td>
<td>planche d'essais</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9V</td>
<td>inspection du revêtement terminé</td>
<td>C - 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9M</td>
<td>mesure à la règle des profils et de l'unité</td>
<td>C - 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11E</td>
<td>échantillonnage à la caroteuse du revêtement</td>
<td>NO 2300</td>
<td>V - 2449</td>
<td></td>
</tr>
<tr>
<td>11C</td>
<td>contrôle de la compacité (essai de densité brute et maximale)</td>
<td>NO 2300</td>
<td>C - 2</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Les opérations d'inspection et d'essais durant la mise en œuvre présumptent que la préparation de la surface à recouvrir a été contrôlée ainsi que tous les engins, outils et accessoires.

Tableau 12.1 Exemple de description des opérations d'un plan d'inspection et d'essais dans le contrôle de la mise en œuvre des bétons bitumineux EB-14
13.3.3.2 Obturation de fissures
Le but premier de l’obturation de fissures, qu’on nomme quelquefois « scellement des fissures », est d’empêcher l’infiltration d’eau et de matières nuisibles, comme les sels déglacants et les abrasifs, jusqu’aux matériaux granulaires de la fondation, cela afin de limiter les mouvements dus au gel et l’apparition d’autres défauts plus graves. Ce type d’entretien mineur est donc recommandé sur les voies à trafic intense où sont régulièrement utilisés en hiver des sels déglacants et des matériaux abrasifs.

a) Limites
Ce type d’entretien n’est efficace et recommandé que sous certaines conditions, dont voici les principales :
- Seules les fissures simples (par exemple : les fissures de retrait, les fissures le long des joints, les fissures latérales), non dégradées et de moins de 30 mm de large, doivent être obturées. La distance entre deux fissures transversales doit être de 10 m et plus. Autrement dit, l’obturation des fissures ne convient pas pour les fissures polygonales ou en damier.
- Si on relève plus de 3 000 m de fissures environ (réparties habituellement en 2 000 m de fissures transversales et 1 000 m de fissures longitudinales) sur 1 km de revêtement, on doit opter pour une nouvelle couche de roulement (entretien majeur) dont l’épaisseur dépendra de l’importance des fissures et du type de revêtement souple retenu.
- Ce type d’entretien mineur doit être effectué entre le 15 mai et le 1er septembre, lorsque la température ambiante est entre 5 °C et 32 °C. Mais il est à éviter en pleine période de chaleur ou d’intense trafic.

b) Procédés
Rappelons que les enrobés en centrale à chaud (MB-10) peuvent être utilisés pour l’obturation de larges ou multiples fissures (plus de 25 mm). Mais dans ce cas, il faut un compactage adéquat de l’enrobé après sa mise en place. Un liant bitumineux (bitume routier, à haute pénétration ou bitume fluidifié), suivi de l’épandage d’un granulat calibré et sec (granulat de 2.5 à 5 mm ou un sable), peut aussi servir pour obturer temporairement une petite fissure. Cependant, on doit se rappeler que ce genre d’obturation dure rarement plus d’un an.
15.4.2 Spécifications concernant les liants utilisés
Si la viscosité et la charge électrique (affinité avec le granulat) sont les caractéristiques indispensables du liant dans un traitement bitumineux de surface, par contre, plusieurs autres propriétés sont couvertes par les spécifications (tableau 15.1).

Tableau 4105-5
Exigences et méthodes d’essais pour les émulsions de bitume polymère

<table>
<thead>
<tr>
<th>Caractéristiques</th>
<th>Classe</th>
<th>RS–2P</th>
<th>CRS–2P</th>
<th>Méthodes d’essais</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosité Saybolt Furol à 50 °C (sec)</td>
<td>100</td>
<td>300</td>
<td>100</td>
<td>300</td>
</tr>
<tr>
<td>Essai granulométrique % de refus sur tamis no. 1000 (% en masse)</td>
<td>—</td>
<td>0,2</td>
<td>—</td>
<td>0,2</td>
</tr>
<tr>
<td>Résidu de distillation jusqu’à 205 °C (% en masse)</td>
<td>60</td>
<td>—</td>
<td>65</td>
<td>—</td>
</tr>
<tr>
<td>Sédiméntation après 5 jours (% en masse)</td>
<td>—</td>
<td>3</td>
<td>—</td>
<td>5</td>
</tr>
<tr>
<td>Essai de stabilité au stockage, 24 heures (% en masse)</td>
<td>—</td>
<td>1,5</td>
<td>—</td>
<td>1,5</td>
</tr>
<tr>
<td>Portion huileuse du distillat (% en volume)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>3</td>
</tr>
<tr>
<td>Déséquilibre (35 ml, CaC₂O₄, 1,11g/L) (% en masse)</td>
<td>60</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Charge des particules</td>
<td>négatives</td>
<td>positives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Essais sur résidu</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pénétration à 25 °C, 100 g, 5 sec (0,1 mm)</td>
<td>100</td>
<td>200</td>
<td>100</td>
<td>250</td>
</tr>
<tr>
<td>Viscosité cinématique à 135 °C (mm²/s)</td>
<td>(i)</td>
<td>(i)</td>
<td>(i)</td>
<td>—</td>
</tr>
<tr>
<td>Point de ramollissement (°C)</td>
<td>50</td>
<td>—</td>
<td>45</td>
<td>—</td>
</tr>
<tr>
<td>Solubilité dans le trichloréthylène (%)</td>
<td>97,5</td>
<td>—</td>
<td>97,5</td>
<td>—</td>
</tr>
<tr>
<td>Recouvrance d’élasticité 4 °C, 10 cm, 5 cm/min (%)</td>
<td>55</td>
<td>—</td>
<td>55</td>
<td>—</td>
</tr>
<tr>
<td>Rapport force ductilité (F2/F1), 4 °C, 5 cm/min (cm)</td>
<td>0,30</td>
<td>—</td>
<td>0,30</td>
<td>—</td>
</tr>
</tbody>
</table>

Note :
1. Pour une pénétration donnée, la viscosité à 135 °C, mesurée expérimentalement, doit être au moins égale à celle calculée par l’application de l’équation suivante (groupe A) :

\[\log V = 4,2560 - 0,7967 \log P \]

où \(V = \) Viscosité à 135 °C en mm²/s
et \(P = \) Pénétration à 25 °C, 100 g, 5 sec, en 0,1 mm

Tableau 15.1 Exemple de spécifications portant sur les émulsions pour traitement bitumineux de surface (émulsions polymères)

15.5 GRANULAT
Selon la granularité, le choix du granulat se fait entre six classes granulométriques. Tout dépend :
– du genre de surface à recouvrir (bitumineuse ou granulaire);
– du type de traitement (simple ou double);
– du rang de l’application (couches de base ou de surface);
– du type d’émulsion utilisée.

On trouvera au tableau 15.2 les classes granulométriques propres à chaque utilisation.
Fuseaux granulométriques de spécification pour les traitements de surface (TS1 à TS6)

<table>
<thead>
<tr>
<th>Types de traitement de surface</th>
<th>TS1<sup>(x2)</sup></th>
<th>TS2<sup>(x3)</sup></th>
<th>TS3<sup>(x4)</sup></th>
<th>TS4<sup>(x5)</sup></th>
<th>TS5</th>
<th>TS6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamis</td>
<td>(%) passant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28 mm</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 mm</td>
<td>85–100</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 mm</td>
<td>0–15</td>
<td>85–100</td>
<td>100</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>12,5 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>75–95</td>
<td>90–100</td>
</tr>
<tr>
<td>10 mm</td>
<td>0–3</td>
<td>0–15</td>
<td>85–100</td>
<td>100</td>
<td>50–80</td>
<td>50–80</td>
</tr>
<tr>
<td>5 mm</td>
<td>0–3</td>
<td>0–15</td>
<td>85–100</td>
<td>25–50</td>
<td>25–50</td>
<td></td>
</tr>
<tr>
<td>2,5 mm</td>
<td></td>
<td>0–3</td>
<td>0–15</td>
<td>15–47</td>
<td>15–47</td>
<td></td>
</tr>
<tr>
<td>1,25 mm</td>
<td></td>
<td></td>
<td>0–3</td>
<td>10–40</td>
<td>10–40</td>
<td></td>
</tr>
<tr>
<td>630 μm</td>
<td></td>
<td></td>
<td></td>
<td>3–30</td>
<td>3–30</td>
<td></td>
</tr>
<tr>
<td>315 μm</td>
<td></td>
<td></td>
<td></td>
<td>2–20</td>
<td>2–20</td>
<td></td>
</tr>
<tr>
<td>160 μm</td>
<td></td>
<td></td>
<td></td>
<td>0–10</td>
<td>0–10</td>
<td></td>
</tr>
<tr>
<td>80 μm</td>
<td></td>
<td></td>
<td></td>
<td>0–5</td>
<td>0–5</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Le diamètre moyen (D50) des particules du granulat de la couche de surface doit se situer entre 50 et 60 % du diamètre moyen (D50) des particules du granulat de la couche de base.
2. Classe granulaire 14/20.
5. Classe granulaire 2,5/5.

MTQ (CCDG)

Tableau 15.2 Granulats pour traitement bitumineux de surface

Classes granulométriques selon les utilisations

Nous savons que le MTQ classe les granulats pour revêtements routiers en six classes (tableau 3.2) suivant leur qualité. Seules les deux premières sont habituellement retenues dans les devis pour traitement bitumineux de surface. Le granulat doit donc satisfaire aux exigences pour toutes les caractéristiques prévues aux spécifications...
(tableau 15.3), particulièrement celles touchant les pourcentages de particules plates, allongées, concassées et passant le tamis de 80 μm (propreté).

<table>
<thead>
<tr>
<th>ESSAIS</th>
<th>CLASSES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TS1</td>
</tr>
<tr>
<td>Nombre pétrographique</td>
<td>max. 120</td>
</tr>
<tr>
<td>Durabilité MgSo₄</td>
<td>% max. 5</td>
</tr>
<tr>
<td>Los Angeles</td>
<td>% max. 30</td>
</tr>
<tr>
<td>Micro-Deval</td>
<td>% max. 11</td>
</tr>
<tr>
<td>Particules plates</td>
<td>% max. 25</td>
</tr>
<tr>
<td>Particules allongées</td>
<td>% max. 40</td>
</tr>
<tr>
<td>Fragmentation</td>
<td>% min. 75</td>
</tr>
<tr>
<td>Propreté</td>
<td>% max. 1, 1</td>
</tr>
<tr>
<td>Gravier</td>
<td>1, 1, 1, 1</td>
</tr>
<tr>
<td>Pierre concassée</td>
<td>1, 1, 1, 1</td>
</tr>
<tr>
<td>Couche de surface</td>
<td>0, 7, 0, 7</td>
</tr>
<tr>
<td>Traitement au bitume</td>
<td></td>
</tr>
<tr>
<td>Résidu insoluble</td>
<td>% min. 10</td>
</tr>
</tbody>
</table>

Los Angeles : NQ-2560-400; le maximum est de 32 au lieu de 50 pour une pierre concassée de carrières de calcaire.

Micro-Deval : NQ-2560-070; le maximum est de 16 au lieu de 11 si le Los Angeles est inférieur à 19.

MTQ (CCDQ)

Tableau 15.3 Spécifications sur granulats (classes TS1 et TS2)

15.6 DOSAGE DES CONSTITUANTS

Comme on l’a vu plus haut, un bon mouillage des granulats est essentiel dans un traitement bitumineux de surface, et la quantité de liant nécessaire dépend à la fois de la surface couverte et du granulat. Si l’on peut facilement calculer la surface à recouvrir, le vide entre les particules du granulat est plus difficile à déterminer. En effet, les particules du granulat n’ont pas toutes exactement le même diamètre et la même forme. Certaines sont plus longues (particules allongées) ou moins épaisses (particules plates) que larges. Sous l’action du trafic, elles s’étendent selon leur dimension la plus grande, réduisant fortement le volume des vides à combler entre elles. En outre, les taux d’application du granulat et du liant dépendent de caractéristiques qui sont propres à chacun ainsi que de plusieurs autres facteurs dont on doit tenir compte dans le calcul du taux d’application de chacun.
EXERCICES 1

1.1 Voir l’article 1.1
 - L’infrastructure est constituée des matériaux en place.
 - La structure est construite avec des matériaux ajoutés.

1.2 Voir l’article 1.2
 Aucune.

1.3 Voir l’article 1.2
 Aucune.

1.4 Voir l’article 1.7
 Aucune.

1.5 Voir l’article 1.5.1
 Supporter et répartir toutes les charges.

1.6 Voir l’article 1.5.2
 Celles nécessaires pour répondre aux questions:
 - POURQUOI? Quelles sont les charges et le nombre de véhicules prévus
 (évaluation du trafic)?
 - SUR QUOI? Quelle est la capacité de support du sol en place (évaluation de
 l’infrastructure)?
 - COMMENT? De quelle manière concilier: charges à supporter, capacité de
 support et matériaux disponibles (évaluation des possibilités)?

1.7 Voir l’article 1.6 C.
 À la dernière phase.

1.8 Voir l’article 1.8.1.1 a)
 Revêtement rigide.

1.9 Voir l’article 1.8.1.2 e)
 - Il est le moins cher (meilleur rapport qualité-prix);
 - il peut se construire par étapes;
 - sa mise en service se fait le jour même;
 - il est facile d’entretien;
 - il est disponible partout;
 - il est recyclable.

1.10 Voir l’article 1.8.1.2 a)
 La flexibilité ou la répartition de la charge jusqu’au sol portant.

1.11 Voir l’article 1.8.3
 - La couche de surface est la dernière de plusieurs couches mises consécu-
 tivement en place.
 - La couche de roulement ou d’usure est la nouvelle couche mise en place à la
 surface d’un vieux revêtement bitumineux.

1.12 Voir le tableau 1.4
 Un **EB-10** est un béton bitumineux utilisé par le MTQ pour les couches de
 surface ou de correction (surfaçage), et où la grosseur nominale du granulat est
 de 10 mm.

1.13 Voir l’article 1.8.3.1a)
 - De 4 à 7% de BITUME;
 - De 93 à 96% de GRANULATS.
2.6 Voir les articles 2.2.4 et 2.3.3
- À la température ambiante le bitume routier est très visqueux tandis que le bitume fluidifié est fluide;
- Le bitume fluidifié est un bitume pur rendu temporairement fluide par SOLUBILISATION (habituellement dans un hydrocarbure), tandis que l’émulsion de bitume l’a été rendu par émulsification (dans l’eau);
- Le bitume routier est un bitume pur tel qu’il est obtenu par distillation du pétrole brut tandis qu’un liant modifié est un bitume routier additionné d’un polymère;
- Le bitume est un mélange d’hydrocarbures tandis que l’asphalte est une roche (généralement calcaire) imprégnée de bitume.

2.7 Voir l’article 2.3.1
Le carbone et l’hydrogène.

2.8 Voir l’article 2.3.2
Les asphaltènes et les malthènes.

2.9 Voir l’article 2.3.5
La couleur noire, l’inertie chimique, l’imperméabilité à l’eau, la susceptibilité à la température, le pouvoir d’adhéson et de rétention.

2.10 Voir l’article 2.3.6
Détermination de la température H, de la température L, Viscosité Brookfield, la résistance au vieillissement (à l’oxydation), la pureté, la susceptibilité thermique, la cohésion, l’inflammabilité.

2.11 Voir l’article 2.3.7.1
Détermination de la température H

2.12 Voir l’article 2.3.7.1, but

2.13 Voir l’article 2.3.7.2, procédure sommaire
À étirer, dans un bain à 25°C à une vitesse continue de 5 cm/min et jusqu’à rupture, des éprouvettes de bitume routier, puis à mesurer la longueur d’étirement en centimètres.

2.14 Voir l’article 2.3.7.3
Pa* : les bitumes routiers.

2.15 Voir l’article 2.3.7.5
L’essai d’étuvage en couche mince.

2.16 Voir l’article 2.3.7.7
La température à laquelle ou au-dessus de laquelle il y a grand danger d’incendie.

2.17 Voir l’article 2.3.7.9
À lire la température de l’eau d’un bain qui contient une bille d’acier reposant dans un support sur une pastille de bitume, lorsque le bitume touche la plaque inférieure du support.

2.18 Voir l’article 2.3.7.11
Bitume routier modifié par l’ajout d’un polymère.

2.19 Voir l’article 2.4.1
À prise rapide (RC) avec le naphte comme solvant, à prise moyenne (MC) avec du kérosène et à prise lente (SC) avec une huile légère.
13.9 Voir l'article 13.2.4.12
L’ornière avec bourelets longitudinaux, l’ornière avec fissures et l’ornière sans bourelet ni fissure.

13.10 Voir l’article 13.3.1
L’entretien majeur. Il consiste en la réparation à pleine largeur de tout le revêtement ou de parties importantes de celui-ci et exige l’emploi d’une machinerie adaptée au besoin.

13.11 Voir l’article 13.3.2
Tous les bétons bitumineux classiques, les enrobés chauds avec polymère, les enrobés de renforcement, les enrobés drainants, les enrobés antidérapants, les enrobés cloutés, les divers enrobés fins, les coulis bitumineux, les enduits bitumineux, les divers enrobés recyclés.

13.12 Voir l’article 13.3.3
Le rapiéçage et l’obturation des fissures.

13.13 Voir l’article 13.3.3.1
Découpage de la partie à réparer, remplacement des matériaux de fondation, nettoyage des bords et de la surface, application du liant d’accrochage.

13.14 Voir l’article 13.3.3.2
Empêcher l’infiltration d’eau et de matières nuisibles.

13.15 Voir l’article 13.3.3.2
Se limiter aux fissures simples et non dégradées et qui s’étendent sur moins de 3 000 m par longueur de 1 km de revêtement; effectuer les travaux entre mai et septembre à des températures ambiantes comprises entre 5°C et 32°C.

13.16 Voir l’article 13.3.3.2 b)
Enrobé préparé en centrale à chaud (MB-10), bitume routier à haute pénétration ou bitume fluidifié suivi de l’étalage d’un granulat fin et sec, le procédé par pontage et le procédé par excavation.

13.17 Voir l’article 13.3.3.2 c)
C’est le nettoyage et le séchage de la fissure. Toutes les parties meubles doivent être enlevées, l’intérieur et les bords balayés et nettoyés au jet d’air de manière que la fissure soit sèche, propre et chaude.

EXERCICES 14

14.1 Voir l’article 14.1.2
En enrobés denses, en enrobés à granulométrie discontinue et en enrobés ouverts.

14.2 Voir l’article 14.1.2.1
Les polymères, l’amianté, le soufre, les caoutchoucs, les latex et résines.
- Les bétons bitumineux avec un polymère. Le polymère permet d’augmenter la viscosité et la force de cohésion du liant et ainsi donner au revêtement une meilleure résistance à l’ornièreage.
- Les bétons bitumineux avec fibres d’amianté. Les fibres d’amianté augmentent la force de cohésion entre particules en même temps que la résistance du revêtement à la fissuration.
LANGLOIS, R., *Recyclage des revêtements bitumineux*, MTQ.

Peltier, *Manuel du laboratoire routier*.

RGRA (France), *Guide pratique de la construction routière*.

A1-1 Détermination de la pénétration (NQ 2300-270)

BUT

Mesurer la dureté relative ou la consistance d'un bitume routier (employé comme tel, modifié ou ayant servi de base dans un bitume liquide ou une émulsion de bitume).

PROCÉDURE SOMMAIRE

L'essai est effectué à 25 °C, température à laquelle on porte et maintient la prise d'essai. Une aiguille normalisée, effleurant au départ la surface du bitume, s'enfonce en chute libre pendant cinq secondes sous une charge de cent grammes (incluant la masse de l'aiguille). La distance parcourue par l'aiguille, mesurée en dixièmes de millimètre (0,1 mm), est la mesure de la pénétration (figure 2.3).

SIGNIFICATION PRATIQUE

Le résultat, qu'on note généralement sans unité, est inversement proportionnel à la dureté relative du bitume. Il permet de classer les bitumes routiers, les plus durs ayant les plus petites pénétrations. Réalisé à différentes températures, cet essai peut aider à extrapoler le degré de susceptibilité à la fissuration du bitume, ou sa susceptibilité thermique. Pour une température de 4 °C, la charge totale est alors de deux cent grammes et la durée de l'essai de soixante secondes, tandis qu'à 46 °C, la charge totale est de cinquante grammes et le temps de cinq secondes. Mais l'essai à 4 °C est de moins en moins exécuté du fait que les résultats sont discutables.

Selon leur dureté relative ou consistance mesurée à l'essai de pénétration, les bitumes se classent en trois groupes: bitumes durs, semi-durs et mous.

Les bitumes durs ont une pénétration inférieure à 10. Ils ne conviennent pas aux revêtements routiers.

Les bitumes demi-durs sont ceux qu'on utilise dans les revêtements routiers. De ce fait, on les appelle aussi «bitumes routiers». Leur pénétration est comprise entre 10 et 300. On les emploie principalement dans les enrobés en centrale à chaud, dont le béton bitumineux classique. On y retrouve généralement les classes suivantes: 60-70, 80-100, 150-200 et 200-300. Toutefois en les combinant entre eux, on peut obtenir d'autres classes intermédiaires, comme le 120-150.

Les bitumes mous ont une pénétration de plus de 300; ils ne sont pas utilisés dans les bétons bitumineux.
A1-2 Détermination de la ductilité (NQ 2300-055)

BUT
Mesurer la limite d’allongement d’un échantillon de bitume qu’on étire.

PROCÉDURE SOMMAIRE
Dans un bain d’eau maintenu à 25 °C, on étire mécaniquement à une vitesse continue de 5 cm/min et jusqu’à rupture des éprouvettes de bitume contenues dans un moule spécial. Le nombre de centimètres qu’atteint l’éprouvette juste avant de se rompre est la mesure de la ductilité. Pour un bitume routier, la rupture doit se faire à plus de cent centimètres d’étirement (figure 2.4).

SIGNIFICATION PRATIQUE
L’essai normalisé est une mesure de la rigidité du bitume. Cependant la signification de cet essai n’a jamais été clairement établie, de sorte qu’il a peu ou pas de signification pour le comportement futur d’un revêtement. Réalisé à d’autres températures et vitesses (par exemple, à 4 °C et à 1 cm/min), l’essai peut donner un indice de la susceptibilité thermique du bitume. À consistance équivalente, la ductilité varie d’autant plus vite que la susceptibilité est élevée.
A1-3 Détermination de la viscosité cinématique (NQ 2300-6000)

BUT
Mesurer la résistance à l’écoulement ou la consistance à haute température d’un bitume routier.

PROCÉDURE SOMMAIRE
Réalisé à 135 °C, l’essai consiste à mesurer, au dixième de seconde près, combien de temps un bitume met pour remplir une ampoule de volume déterminé après écoulement dans le tube capillaire d’un viscosimètre (figure 2.5). La viscosité cinématique s’obtient en multipliant ce temps en secondes par la constante du viscosimètre, dont l’étalonnage a été fait par le fabricant.

SIGNIFICATION PRATIQUE
Dans le système SI, le résultat s’exprime en centistokes (cSt), soit en mm²/s. La viscosité est une mesure de la résistance à l’écoulement, ou plus précisément de la résistance opposée par le bitume à sa déformation dans un champ de gravité reproductible. Elle est l’inverse de la fluidité; plus elle est élevée, plus la fluidité est faible. La viscosité permet d’évaluer indirectement la fluidité d’un bitume à l’enrobage.

Source : Asphalt Institute

Figure A1-3 Viscosimètre pour viscosité cinématique